mirror of
https://github.com/triqs/dft_tools
synced 2024-11-01 11:43:47 +01:00
9265c2db7f
- Cleaned of the eigensystems computations (worker is simpler, decision at runtime, etc..). - Fix #119 : When the matrix is in C order, the fortran lapack sees in fact its conjugate, so we need to conjugate the eigenvectors at the end. NB : not true if the storage order of the matrix is already fortran of course.
128 lines
3.2 KiB
C++
128 lines
3.2 KiB
C++
/*******************************************************************************
|
|
*
|
|
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
|
*
|
|
* Copyright (C) 2011 by O. Parcollet
|
|
*
|
|
* TRIQS is free software: you can redistribute it and/or modify it under the
|
|
* terms of the GNU General Public License as published by the Free Software
|
|
* Foundation, either version 3 of the License, or (at your option) any later
|
|
* version.
|
|
*
|
|
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
|
* details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
******************************************************************************/
|
|
#include "./common.hpp"
|
|
#include <triqs/arrays/linalg/eigenelements.hpp>
|
|
#include <triqs/utility/complex_ops.hpp>
|
|
|
|
#include <iostream>
|
|
|
|
using namespace triqs::arrays;
|
|
using namespace triqs::arrays::linalg;
|
|
using dcomplex = std::complex<double>;
|
|
|
|
template <typename T> void check_eig(matrix<T> M, matrix<T> vectors, array<double, 1> values) {
|
|
auto _ = range();
|
|
for (auto i : range(0,first_dim(M))) {
|
|
std::cerr << "check "<< i << std::endl;
|
|
std::cerr << (M -values(i))* vectors(i, _)<<std::endl;
|
|
assert_all_close(M * vectors(i, _), values(i) * vectors(i, _), 1.e-14);
|
|
}}
|
|
|
|
template<typename M> void test(M A) {
|
|
auto w = eigenelements(make_clone(A));
|
|
std::cerr << "A = " << A << std::endl;
|
|
std::cerr << " values = " <<w.first << std::endl;
|
|
std::cerr << " vectors = " << w.second << std::endl;
|
|
check_eig (A, w.second, w.first);
|
|
}
|
|
|
|
int main(int argc, char **argv) {
|
|
|
|
{
|
|
matrix<double> A(3, 3);
|
|
|
|
for (int i = 0; i < 3; ++i)
|
|
for (int j = 0; j <= i; ++j) {
|
|
A(i, j) = (i > j ? i + 2 * j : i - j);
|
|
A(j, i) = A(i, j);
|
|
}
|
|
std::cerr << "A = " << A << std::endl;
|
|
|
|
auto B = A;
|
|
auto w = eigenelements(B);
|
|
std::cout << "A = " << B << std::endl;
|
|
std::cout << " vectors = " << w.first << std::endl;
|
|
std::cout << " values = " << w.second << std::endl;
|
|
check_eig (A, w.second, w.first);
|
|
}
|
|
|
|
{
|
|
matrix<double> A(3, 3);
|
|
A() = 0;
|
|
A(0, 1) = 1;
|
|
A(1, 0) = 1;
|
|
A(2, 2) = 8;
|
|
A(0, 2) = 2;
|
|
A(2, 0) = 2;
|
|
|
|
auto B = A;
|
|
std::cout << "A = " << A << std::endl;
|
|
auto w = eigenelements(B);
|
|
std::cout << " values = " <<w.first << std::endl;
|
|
std::cout << " vectors = " << w.second << std::endl;
|
|
check_eig (A, w.second, w.first);
|
|
}
|
|
|
|
{
|
|
matrix<double> A(3, 3);
|
|
|
|
A() = 0;
|
|
A(0, 1) = 1;
|
|
A(1, 0) = 1;
|
|
A(2, 2) = 8;
|
|
|
|
auto B = A;
|
|
std::cout << "A = " << A << std::endl;
|
|
auto w = eigenelements(B);
|
|
std::cout << " vectors = " << w.second << std::endl;
|
|
std::cout << " values = " <<w.first << std::endl;
|
|
std::cout << "A = " << A << std::endl;
|
|
check_eig (A, w.second, w.first);
|
|
}
|
|
|
|
{ // the complex case
|
|
|
|
matrix<dcomplex> M(2, 2);
|
|
|
|
M(0, 0) = 1;
|
|
M(0, 1) = 1.0_j;
|
|
M(1, 0) = -1.0_j;
|
|
M(1, 1) = 2;
|
|
|
|
test(M);
|
|
}
|
|
|
|
{ // the complex case
|
|
|
|
matrix<dcomplex> M(2, 2, FORTRAN_LAYOUT);
|
|
|
|
M(0, 0) = 1;
|
|
M(0, 1) = 1.0_j;
|
|
M(1, 0) = -1.0_j;
|
|
M(1, 1) = 2;
|
|
|
|
test(M);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|