mirror of
https://github.com/triqs/dft_tools
synced 2024-12-23 04:43:42 +01:00
Fixing TransBasis
This commit is contained in:
parent
d66950a043
commit
810b315c92
@ -60,6 +60,10 @@ class TransBasis:
|
||||
- 'eal' : local hamiltonian (i.e. crystal field)
|
||||
- 'dm' : local density matrix
|
||||
|
||||
calc_in_solver_blocks : bool, optional
|
||||
Whether the property shall be diagonalized in the
|
||||
full sumk structure, or just in the solver structure.
|
||||
|
||||
Returns
|
||||
-------
|
||||
wsqr : double
|
||||
@ -78,26 +82,27 @@ class TransBasis:
|
||||
|
||||
if calc_in_solver_blocks:
|
||||
trafo = self.SK.block_structure.transformation
|
||||
self.SK.block_structure.transform = None
|
||||
self.SK.block_structure.transformation = None
|
||||
|
||||
prop_solver = self.SK.block_structure.convert_matrix(prop, space_from='sumk', space_to='solver')
|
||||
v= []
|
||||
v= {}
|
||||
for name in prop_solver:
|
||||
v[name] = numpy.linalg.eigh(prop_solver[name])[1]
|
||||
self.w = self.SK.block_structure.convert_matrix(v, space_from='solver', space_to='sumk')['ud' if self.SK.SO else 'up']
|
||||
self.T = numpy.dot(self.T.transpose().conjugate(),
|
||||
self.w).conjugate().transpose()
|
||||
self.SK.block_structure.transform = trafo
|
||||
|
||||
if self.SK.SO == 0:
|
||||
self.eig, self.w = numpy.linalg.eigh(prop['up'])
|
||||
# calculate new Transformation matrix
|
||||
self.T = numpy.dot(self.T.transpose().conjugate(),
|
||||
self.w).conjugate().transpose()
|
||||
self.SK.block_structure.transformation = trafo
|
||||
else:
|
||||
self.eig, self.w = numpy.linalg.eigh(prop['ud'])
|
||||
# calculate new Transformation matrix
|
||||
self.T = numpy.dot(self.T.transpose().conjugate(),
|
||||
self.w).conjugate().transpose()
|
||||
if self.SK.SO == 0:
|
||||
self.eig, self.w = numpy.linalg.eigh(prop['up'])
|
||||
# calculate new Transformation matrix
|
||||
self.T = numpy.dot(self.T.transpose().conjugate(),
|
||||
self.w).conjugate().transpose()
|
||||
else:
|
||||
self.eig, self.w = numpy.linalg.eigh(prop['ud'])
|
||||
# calculate new Transformation matrix
|
||||
self.T = numpy.dot(self.T.transpose().conjugate(),
|
||||
self.w).conjugate().transpose()
|
||||
|
||||
# measure for the 'unity' of the transformation:
|
||||
wsqr = sum(abs(self.w.diagonal())**2) / self.w.diagonal().size
|
||||
|
Loading…
Reference in New Issue
Block a user