From 810b315c92e44a735b893ef0a3a7b4148a023a4a Mon Sep 17 00:00:00 2001 From: Hermann Schnait Date: Tue, 18 Jun 2019 16:53:44 +0200 Subject: [PATCH] Fixing TransBasis --- python/trans_basis.py | 31 ++++++++++++++++++------------- 1 file changed, 18 insertions(+), 13 deletions(-) diff --git a/python/trans_basis.py b/python/trans_basis.py index f00140d6..7bd2ee4e 100644 --- a/python/trans_basis.py +++ b/python/trans_basis.py @@ -60,6 +60,10 @@ class TransBasis: - 'eal' : local hamiltonian (i.e. crystal field) - 'dm' : local density matrix + calc_in_solver_blocks : bool, optional + Whether the property shall be diagonalized in the + full sumk structure, or just in the solver structure. + Returns ------- wsqr : double @@ -78,26 +82,27 @@ class TransBasis: if calc_in_solver_blocks: trafo = self.SK.block_structure.transformation - self.SK.block_structure.transform = None + self.SK.block_structure.transformation = None + prop_solver = self.SK.block_structure.convert_matrix(prop, space_from='sumk', space_to='solver') - v= [] + v= {} for name in prop_solver: v[name] = numpy.linalg.eigh(prop_solver[name])[1] self.w = self.SK.block_structure.convert_matrix(v, space_from='solver', space_to='sumk')['ud' if self.SK.SO else 'up'] self.T = numpy.dot(self.T.transpose().conjugate(), self.w).conjugate().transpose() - self.SK.block_structure.transform = trafo - - if self.SK.SO == 0: - self.eig, self.w = numpy.linalg.eigh(prop['up']) - # calculate new Transformation matrix - self.T = numpy.dot(self.T.transpose().conjugate(), - self.w).conjugate().transpose() + self.SK.block_structure.transformation = trafo else: - self.eig, self.w = numpy.linalg.eigh(prop['ud']) - # calculate new Transformation matrix - self.T = numpy.dot(self.T.transpose().conjugate(), - self.w).conjugate().transpose() + if self.SK.SO == 0: + self.eig, self.w = numpy.linalg.eigh(prop['up']) + # calculate new Transformation matrix + self.T = numpy.dot(self.T.transpose().conjugate(), + self.w).conjugate().transpose() + else: + self.eig, self.w = numpy.linalg.eigh(prop['ud']) + # calculate new Transformation matrix + self.T = numpy.dot(self.T.transpose().conjugate(), + self.w).conjugate().transpose() # measure for the 'unity' of the transformation: wsqr = sum(abs(self.w.diagonal())**2) / self.w.diagonal().size