3
0
mirror of https://github.com/triqs/dft_tools synced 2025-01-05 10:59:34 +01:00
dft_tools/doc/guide/dftdmft_singleshot.rst

245 lines
10 KiB
ReStructuredText
Raw Normal View History

.. highlight:: python
.. _singleshot:
Single-shot DFT+DMFT
====================
.. warning::
TO BE UPDATED!
After having set up the hdf5 archive, we can now do our DFT+DMFT calculation. It consists of
initialisation steps, and the actual DMFT self consistency loop.
Initialisation of the calculation
---------------------------------
Before doing the calculation, we have to intialize all the objects that we will need. The first thing is the
:class:`SumkDFT` class. It contains all basic routines that are necessary to perform a summation in k-space
to get the local quantities used in DMFT. It is initialized by::
from pytriqs.applications.dft.sumk_dft import *
SK = SumkDFT(hdf_file = filename)
Setting up the impurity solver
------------------------------
The next step is to setup the impurity solver.
For more details here, see the `CTHYB <http://ipht.cea.fr/triqs/1.2/applications/cthyb/>`_ documentation.
Doing the DMFT loop
-------------------
Having initialised the SumK class and the Solver, we can proceed with the DMFT
loop itself. As explained in the tutorial, we have to set up the loop over DMFT
iterations and the self-consistency condition::
n_loops = 5
for iteration_number in range(n_loops) : # start the DMFT loop
SK.put_Sigma(Sigma_imp = [ S.Sigma ]) # Put self energy to the SumK class
chemical_potential = SK.calc_mu() # calculate the chemical potential for the given density
S.G_iw << SK.extract_G_loc()[0] # extract the local Green function
S.G0_iw << inverse(S.Sigma_iw + inverse(S.G_iw)) # finally get G0, the input for the Solver
2015-06-22 12:37:47 +02:00
S.solve(h_int=h_int, **p) # now solve the impurity problem
dm = S.G_iw.density() # Density matrix of the impurity problem
SK.calc_dc(dm, U_interact=U, J_hund=J, orb=0, use_dc_formula=dc_type) # Set the double counting term
SK.save(['chemical_potential','dc_imp','dc_energ']) # Save data in the hdf5 archive
These basic steps are enough to set up the basic DMFT Loop. For a detailed
description of the :class:`SumkDFT` routines, see the reference manual. After
the self-consistency steps, the solution of the Anderson impurity problem is
calculation by CTQMC. Different to model calculations, we have to do a few
more steps after this, because of the double-counting correction. We first
calculate the density of the impurity problem. Then, the routine `calc_dc`
takes as parameters this density matrix, the Coulomb interaction, Hund's rule
coupling, and the type of double-counting that should be used. Possible values
for `use_dc_formula` are:
* `0`: Full-localised limit
* `1`: DC formula as given in K. Held, Adv. Phys. 56, 829 (2007).
* `2`: Around-mean-field
At the end of the calculation, we can save the Greens function and self energy into a file::
from pytriqs.archive import HDFArchive
import pytriqs.utility.mpi as mpi
if mpi.is_master_node():
ar = HDFArchive("YourDFTDMFTcalculation.h5",'w')
ar["G"] = S.G_iw
ar["Sigma"] = S.Sigma_iw
This is it!
These are the essential steps to do a one-shot DFT+DMFT calculation.
For full charge-self consistent calculations, there are some more things
to consider, which we will see later on.
2013-08-07 16:40:18 +02:00
A more advanced example
-----------------------
2013-08-07 16:40:18 +02:00
Normally, one wants to adjust some more parameters in order to make the calculation more efficient. Here, we
will see a more advanced example, which is also suited for parallel execution.
First, we load the necessary modules::
2014-11-18 11:30:26 +01:00
from pytriqs.applications.dft.sumk_dft import *
2013-08-07 16:40:18 +02:00
from pytriqs.applications.dft.converters.wien2k_converter import *
from pytriqs.gf.local import *
2015-03-11 14:35:28 +01:00
from pytriqs.archive import HDFArchive
2015-06-17 15:13:02 +02:00
from pytriqs.operators.util import *
2015-03-11 14:35:28 +01:00
from pytriqs.applications.impurity_solvers.cthyb import *
2013-08-07 16:40:18 +02:00
Then we define some parameters::
2014-11-18 11:30:26 +01:00
dft_filename='srvo3'
2014-05-30 02:07:07 +02:00
U = 2.7
2013-08-07 16:40:18 +02:00
J = 0.65
beta = 40
2015-03-11 14:35:28 +01:00
loops = 10 # Number of DMFT sc-loops
sigma_mix = 0.8 # Mixing factor of Sigma after solution of the AIM
delta_mix = 1.0 # Mixing factor of Delta as input for the AIM
2013-08-07 16:40:18 +02:00
dc_type = 1 # DC type: 0 FLL, 1 Held, 2 AMF
2014-11-18 11:30:26 +01:00
use_blocks = True # use bloc structure from DFT input
2013-08-07 16:40:18 +02:00
prec_mu = 0.0001
2014-05-30 02:07:07 +02:00
2015-03-11 14:35:28 +01:00
# Solver parameters
p = {}
p["length_cycle"] = 200
p["n_warmup_cycles"] = 2000
p["n_cycles"] = 20000
2013-08-07 16:40:18 +02:00
2015-03-11 14:35:28 +01:00
Most of these parameters are self-explanatory. The first, `dft_filename`, gives the filename of the input files.
2013-08-07 16:40:18 +02:00
The next step, as described in the previous section, is to convert the input files::
2014-11-18 11:30:26 +01:00
Converter = Wien2kConverter(filename=dft_filename, repacking=True)
Converter.convert_dft_input()
2013-08-07 16:40:18 +02:00
mpi.barrier()
The command ``mpi.barrier()`` ensures that all nodes wait until the conversion of the input is finished on the master
node. After the conversion, we can check in the hdf5 archive, if previous runs are present, or if we have to start
from scratch::
previous_runs = 0
previous_present = False
if mpi.is_master_node():
2015-03-11 14:35:28 +01:00
f = HDFArchive(dft_filename+'.h5','a')
if 'dmft_output' in f:
ar = f['dmft_output']
if 'iterations' in ar:
previous_present = True
previous_runs = ar['iterations']
else:
f.create_group('dmft_output')
del f
2013-08-07 16:40:18 +02:00
previous_runs = mpi.bcast(previous_runs)
previous_present = mpi.bcast(previous_present)
2014-11-18 11:30:26 +01:00
Now we can use all this information to initialise the :class:`SumkDFT` class::
2013-08-07 16:40:18 +02:00
2015-03-11 14:35:28 +01:00
SK = SumkDFT(hdf_file=dft_filename+'.h5',use_dft_blocks=use_blocks)
2013-08-07 16:40:18 +02:00
The next step is to initialise the :class:`Solver` class::
2013-08-07 16:40:18 +02:00
2015-03-11 14:35:28 +01:00
n_orb = SK.corr_shells[0]['dim']
l = SK.corr_shells[0]['l']
2015-03-11 14:35:28 +01:00
spin_names = ["up","down"]
orb_names = [i for i in range(n_orb)]
# Use GF structure determined by DFT blocks
gf_struct = SK.gf_struct_solver[0]
# Construct U matrix for density-density calculations
Umat, Upmat = U_matrix_kanamori(n_orb=n_orb, U_int=U, J_hund=J)
# Construct Hamiltonian and solver
2015-06-22 12:37:47 +02:00
h_int = h_int_density(spin_names, orb_names, map_operator_structure=SK.sumk_to_solver[0], U=Umat, Uprime=Upmat, H_dump="H.txt")
2015-03-11 14:35:28 +01:00
S = Solver(beta=beta, gf_struct=gf_struct)
2013-08-07 16:40:18 +02:00
If there are previous runs stored in the hdf5 archive, we can now load the self energy
of the last iteration::
2015-03-11 14:35:28 +01:00
if previous_present:
if mpi.is_master_node():
S.Sigma_iw << HDFArchive(dft_filename+'.h5','a')['dmft_output']['Sigma_iw']
chemical_potential,dc_imp,dc_energ = SK.load(['chemical_potential','dc_imp','dc_energ'])
S.Sigma_iw << mpi.bcast(S.Sigma_iw)
SK.set_mu(chemical_potential)
SK.set_dc(dc_imp,dc_energ)
2013-08-07 16:40:18 +02:00
2015-03-11 14:35:28 +01:00
The self-energy is broadcast from the master node to the slave nodes. Also, the
last saved chemical potential and double counting values are read in and set.
2013-08-07 16:40:18 +02:00
2015-03-11 14:35:28 +01:00
Now we can go to the definition of the self-consistency step. It consists again
of the basic steps discussed in the previous section, with some additional
refinement::
for iteration_number in range(1,loops+1):
if mpi.is_master_node(): print "Iteration = ", iteration_number
2014-05-30 02:07:07 +02:00
2015-03-11 14:35:28 +01:00
SK.symm_deg_gf(S.Sigma_iw,orb=0) # symmetrise Sigma
SK.put_Sigma(Sigma_imp = [ S.Sigma_iw ]) # put Sigma into the SumK class
chemical_potential = SK.calc_mu( precision = prec_mu ) # find the chemical potential for given density
S.G_iw << SK.extract_G_loc()[0] # calc the local Green function
mpi.report("Total charge of Gloc : %.6f"%S.G_iw.total_density())
2014-05-30 02:07:07 +02:00
2015-03-11 14:35:28 +01:00
# Init the DC term and the real part of Sigma, if no previous runs found:
if (iteration_number==1 and previous_present==False):
dm = S.G_iw.density()
SK.calc_dc(dm, U_interact = U, J_hund = J, orb = 0, use_dc_formula = dc_type)
S.Sigma_iw << SK.dc_imp[0]['up'][0,0]
2014-05-30 02:07:07 +02:00
2015-03-11 14:35:28 +01:00
# Calculate new G0_iw to input into the solver:
if mpi.is_master_node():
# We can do a mixing of Delta in order to stabilize the DMFT iterations:
S.G0_iw << S.Sigma_iw + inverse(S.G_iw)
ar = HDFArchive(dft_filename+'.h5','a')['dmft_output']
if (iteration_number>1 or previous_present):
mpi.report("Mixing input Delta with factor %s"%delta_mix)
Delta = (delta_mix * delta(S.G0_iw)) + (1.0-delta_mix) * ar['Delta_iw']
S.G0_iw << S.G0_iw + delta(S.G0_iw) - Delta
ar['Delta_iw'] = delta(S.G0_iw)
S.G0_iw << inverse(S.G0_iw)
del ar
2014-05-30 02:07:07 +02:00
2015-03-11 14:35:28 +01:00
S.G0_iw << mpi.bcast(S.G0_iw)
# Solve the impurity problem:
2015-06-22 12:37:47 +02:00
S.solve(h_int=h_int, **p)
2014-05-30 02:07:07 +02:00
2015-03-11 14:35:28 +01:00
# Solved. Now do post-processing:
mpi.report("Total charge of impurity problem : %.6f"%S.G_iw.total_density())
2014-05-30 02:07:07 +02:00
2015-03-11 14:35:28 +01:00
# Now mix Sigma and G with factor sigma_mix, if wanted:
if (iteration_number>1 or previous_present):
if mpi.is_master_node():
ar = HDFArchive(dft_filename+'.h5','a')['dmft_output']
mpi.report("Mixing Sigma and G with factor %s"%sigma_mix)
S.Sigma_iw << sigma_mix * S.Sigma_iw + (1.0-sigma_mix) * ar['Sigma_iw']
S.G_iw << sigma_mix * S.G_iw + (1.0-sigma_mix) * ar['G_iw']
del ar
S.G_iw << mpi.bcast(S.G_iw)
S.Sigma_iw << mpi.bcast(S.Sigma_iw)
2014-05-30 02:07:07 +02:00
2015-03-11 14:35:28 +01:00
# Write the final Sigma and G to the hdf5 archive:
if mpi.is_master_node():
ar = HDFArchive(dft_filename+'.h5','a')['dmft_output']
if previous_runs: iteration_number += previous_runs
ar['iterations'] = iteration_number
ar['G_0'] = S.G0_iw
ar['G_tau'] = S.G_tau
ar['G_iw'] = S.G_iw
ar['Sigma_iw'] = S.Sigma_iw
del ar
# Set the new double counting:
dm = S.G_iw.density() # compute the density matrix of the impurity problem
SK.calc_dc(dm, U_interact = U, J_hund = J, orb = 0, use_dc_formula = dc_type)
# Save stuff into the dft_output group of hdf5 archive in case of rerun:
SK.save(['chemical_potential','dc_imp','dc_energ'])
2014-11-18 11:30:26 +01:00
This is all we need for the DFT+DMFT calculation. At the end, all results are stored in the hdf5 output file.