mirror of
https://github.com/triqs/dft_tools
synced 2024-12-21 11:53:41 +01:00
advanced example in docs corrected
This commit is contained in:
parent
c11a85ffd6
commit
90e2379195
@ -16,20 +16,21 @@ First, we load the necessary modules::
|
||||
Then we define some parameters::
|
||||
|
||||
lda_filename='srvo3'
|
||||
U = 4.0
|
||||
U = 2.7
|
||||
J = 0.65
|
||||
beta = 40
|
||||
loops = 10 # Number of DMFT sc-loops
|
||||
mix = 1.0 # Mixing factor of Sigma after solution of the AIM
|
||||
loops = 1 # Number of DMFT sc-loops
|
||||
mix = 0.8 # Mixing factor of Sigma after solution of the AIM
|
||||
Delta_mix = 1.0 # Mixing factor of Delta as input for the AIM
|
||||
dc_type = 1 # DC type: 0 FLL, 1 Held, 2 AMF
|
||||
use_blocks = True # use bloc structure from LDA input
|
||||
use_matrix = False # True: Slater parameters, False: Kanamori parameters U, U-2J, U-3J
|
||||
use_matrix = False # True: Slater parameters, False: Kanamori parameters U+2J, U, U-J
|
||||
use_spinflip = False # use the full rotational invariant interaction?
|
||||
prec_mu = 0.0001
|
||||
qmc_cycles = 20000
|
||||
qmc_cycles = 200000
|
||||
length_cycle = 200
|
||||
warming_iterations = 2000
|
||||
warming_iterations = 10000
|
||||
|
||||
|
||||
Most of these parameters are self-explaining. The first, `lda_filename`, gives the filename of the input files.
|
||||
The next step, as described in the previous section, is to convert the input files::
|
||||
@ -84,71 +85,67 @@ Now we can go to the definition of the self-consistency step. It consists again
|
||||
previous section, with some additional refinement::
|
||||
|
||||
for iteration_number in range(1,loops+1) :
|
||||
|
||||
|
||||
SK.symm_deg_gf(S.Sigma,orb=0) # symmetrise Sigma
|
||||
SK.put_Sigma(Sigma_imp = [ S.Sigma ]) # put Sigma into the SumK class:
|
||||
|
||||
|
||||
chemical_potential = SK.find_mu( precision = prec_mu ) # find the chemical potential
|
||||
S.G <<= SK.extract_G_loc()[0] # calculation of the local Green function
|
||||
mpi.report("Total charge of Gloc : %.6f"%S.G.total_density())
|
||||
|
||||
|
||||
if ((iteration_number==1)and(previous_present==False)):
|
||||
# Init the DC term and the real part of Sigma, if no previous run was found:
|
||||
dm = S.G.density()
|
||||
SK.set_dc( dm, U_interact = U, J_hund = J, orb = 0, use_dc_formula = dc_type)
|
||||
S.Sigma <<= SK.dc_imp[0]['up'][0,0]
|
||||
|
||||
# now calculate new G0:
|
||||
if (mpi.is_master_node()):
|
||||
# We can do a mixing of Delta in order to stabilize the DMFT iterations:
|
||||
S.G0 <<= S.Sigma + inverse(S.G)
|
||||
ar = HDFArchive(lda_filename+'.h5','a')
|
||||
if ((iteration_number>1) or (previous_present)):
|
||||
mpi.report("Mixing input Delta with factor %s"%Delta_mix)
|
||||
Delta = (Delta_mix * S.G0.delta()) + (1.0-Delta_mix) * ar['DeltaF']
|
||||
S.G0 <<= S.G0 + S.G0.delta() - Delta
|
||||
|
||||
ar['DeltaF'] = S.G0.delta()
|
||||
S.G0 <<= inverse(S.G0)
|
||||
del ar
|
||||
|
||||
S.G0 = mpi.bcast(S.G0)
|
||||
|
||||
|
||||
S.G0 <<= inverse(S.Sigma + inverse(S.G))
|
||||
|
||||
# Solve the impurity problem:
|
||||
S.Solve(U_interact=U,J_hund=J,n_orb=Norb,use_matrix=use_matrix,
|
||||
T=SK.T[0], gf_struct=SK.gf_struct_solver[0],map=SK.map[0],
|
||||
l=l, deg_orbs=SK.deg_shells[0], use_spinflip=use_spinflip,
|
||||
n_cycles =qmc_cycles,length_cycle=length_cycle,n_warmup_cycles=warming_iterations)
|
||||
|
||||
S.solve(U_interact=U,J_hund=J,use_spinflip=use_spinflip,use_matrix=use_matrix,
|
||||
l=l,T=SK.T[0], dim_reps=SK.dim_reps[0], irep=2, deg_orbs=SK.deg_shells[0],n_cycles =qmc_cycles,
|
||||
length_cycle=length_cycle,n_warmup_cycles=warming_iterations)
|
||||
|
||||
# solution done, do the post-processing:
|
||||
mpi.report("Total charge of impurity problem : %.6f"%S.G.total_density())
|
||||
|
||||
|
||||
S.Sigma <<=(inverse(S.G0)-inverse(S.G))
|
||||
# Solve the impurity problem:
|
||||
S.solve(U_interact=U,J_hund=J,use_spinflip=use_spinflip,use_matrix=use_matrix,
|
||||
l=l,T=SK.T[0], dim_reps=SK.dim_reps[0], irep=2, deg_orbs=SK.deg_shells[0],n_cycles =qmc_cycles,
|
||||
length_cycle=length_cycle,n_warmup_cycles=warming_iterations)
|
||||
|
||||
# solution done, do the post-processing:
|
||||
mpi.report("Total charge of impurity problem : %.6f"%S.G.total_density())
|
||||
|
||||
S.Sigma <<=(inverse(S.G0)-inverse(S.G))
|
||||
|
||||
# Now mix Sigma and G with factor Mix, if wanted:
|
||||
if ((iteratio_number>1) or (previous_present)):
|
||||
if ((iteration_number>1) or (previous_present)):
|
||||
if (mpi.is_master_node()):
|
||||
ar = HDFArchive(lda_filename+'.h5','a')
|
||||
mpi.report("Mixing Sigma and G with factor %s"%mix)
|
||||
S.Sigma <<= mix * S.Sigma + (1.0-mix) * ar['SigmaF']
|
||||
S.Sigma <<= mix * S.Sigma + (1.0-mix) * ar['Sigma']
|
||||
S.G <<= mix * S.G + (1.0-mix) * ar['GF']
|
||||
del ar
|
||||
S.G = mpi.bcast(S.G)
|
||||
S.Sigma = mpi.bcast(S.Sigma)
|
||||
|
||||
|
||||
# Write the final Sigma and G to the hdf5 archive:
|
||||
if (mpi.is_master_node()):
|
||||
ar = HDFArchive(lda_filename+'.h5','a')
|
||||
ar['iterations'] = previous_runs + iteration_number
|
||||
ar['SigmaF'] = S.Sigma
|
||||
ar['iterations'] = previous_runs + iteration_number
|
||||
ar['Sigma'] = S.Sigma
|
||||
ar['GF'] = S.G
|
||||
del ar
|
||||
|
||||
del ar
|
||||
save_Gf(S.Sigma,'Sigma')
|
||||
# Now set new double counting:
|
||||
dm = S.G.density()
|
||||
SK.set_dc( dm, U_interact = U, J_hund = J, orb = 0, use_dc_formula = dc_type)
|
||||
|
||||
#Save stuff:
|
||||
|
||||
#Save stuff:
|
||||
SK.save()
|
||||
|
||||
|
||||
This is all we need for the LDA+DMFT calculation. At the end, all results are stored in the hdf5 output file.
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user