3
0
mirror of https://github.com/triqs/dft_tools synced 2025-01-10 04:58:19 +01:00
dft_tools/python/converters/plovasp/examples/ce/hf_solver.py

336 lines
12 KiB
Python
Raw Normal View History

2015-12-18 17:51:26 +01:00
################################################################################
#
# TRIQS: a Toolbox for Research in Interacting Quantum Systems
#
# Copyright (C) 2011 by M. Ferrero, O. Parcollet
#
# TRIQS is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software
# Foundation, either version 3 of the License, or (at your option) any later
# version.
#
# TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
# details.
#
# You should have received a copy of the GNU General Public License along with
# TRIQS. If not, see <http://www.gnu.org/licenses/>.
#
################################################################################
from types import *
#from triqs_dft_tools.U_matrix import *
2015-12-18 17:51:26 +01:00
from U_matrix import *
from pytriqs.gf import *
2015-12-18 17:51:26 +01:00
#from hubbard_I import gf_hi_fullu, sigma_atomic_fullu
import pytriqs.utility.mpi as mpi
from itertools import izip
import numpy
import copy
class Solver:
"""
Hartree-Fock Solver
"""
# initialisation:
def __init__(self, beta, l, n_msb=1025, use_spin_orbit=False, Nmoments=5, dudarev=False):
self.name = "Hartree-Fock"
self.beta = beta
self.l = l
self.Nmsb = n_msb
self.UseSpinOrbit = use_spin_orbit
self.Converged = False
self.Nspin = 2
self.Nmoments=Nmoments
self.dudarev = dudarev
assert use_spin_orbit == False, "Spin-orbit is not implemented"
self.Nlm = 2*l+1
if (use_spin_orbit):
# no blocks!
self.gf_struct = [ ('ud', range(2*self.Nlm)) ]
else:
# up/down blocks:
self.gf_struct = [ ('up', range(self.Nlm)), ('down', range(self.Nlm)) ]
# construct Greens functions:
self.a_list = [a for a,al in self.gf_struct]
glist = lambda : [ GfImFreq(indices = al, beta = self.beta, n_points = self.Nmsb) for a,al in self.gf_struct]
self.G = BlockGf(name_list = self.a_list, block_list = glist(),make_copies=False)
self.G_Old = self.G.copy()
self.G0 = self.G.copy()
self.Sigma = self.G.copy()
self.Sigma_Old = self.G.copy()
def solve(self, U_int, J_hund, T=None, verbosity=0, Iteration_Number=1, Test_Convergence=0.0001):
"""Calculation of the impurity Greens function using Hubbard-I"""
if self.Converged :
mpi.report("Solver %(name)s has already converged: SKIPPING"%self.__dict__)
return
if mpi.is_master_node():
self.verbosity = verbosity
else:
self.verbosity = 0
#self.Nmoments = 5
ur,ujmn,umn=self.__set_umatrix(U=U_int,J=J_hund,T=T)
M = [x for x in self.G.mesh]
self.zmsb = numpy.array([x for x in M],numpy.complex_)
# # for the tails:
# tailtempl={}
# for sig,g in self.G:
# tailtempl[sig] = copy.deepcopy(g.tail)
# for i in range(9): tailtempl[sig][i] *= 0.0
# self.__save_eal('eal.dat',Iteration_Number)
# mpi.report( "Starting Fortran solver %(name)s"%self.__dict__)
self.Sigma_Old <<= self.Sigma
self.G_Old <<= self.G
# # call the fortran solver:
# temp = 1.0/self.beta
# gf,tail,self.atocc,self.atmag = gf_hi_fullu(e0f=self.ealmat, ur=ur, umn=umn, ujmn=ujmn,
# zmsb=self.zmsb, nmom=self.Nmoments, ns=self.Nspin, temp=temp, verbosity = self.verbosity)
#self.sig = sigma_atomic_fullu(gf=self.gf,e0f=self.eal,zmsb=self.zmsb,ns=self.Nspin,nlm=self.Nlm)
def print_matrix(m):
for row in m:
print ''.join(map("{0:12.7f}".format, row))
# Hartree-Fock solver
self.Sigma.zero()
dm = self.G.density()
if mpi.is_master_node():
# print
# print " Reduced U-matrix:"
# print " U:"
# print_matrix(ujmn)
# print " Up:"
# print_matrix(umn)
#
## sig_test = {bl: numpy.zeros((self.Nlm, self.Nlm)) for bl in dm}
# sig_test = {}
# sig_test['up'] = numpy.dot(umn, dm['up'].real) + numpy.dot(ujmn, dm['down'].real)
# sig_test['down'] = numpy.dot(umn, dm['down'].real) + numpy.dot(ujmn, dm['up'].real)
# print " Sigma test:"
# print_matrix(sig_test['up'])
print
print " Density matrix (up):"
print_matrix(dm['up'])
print
print " Density matrix (down):"
print_matrix(dm['down'])
if self.dudarev:
Ueff = U_int - J_hund
corr_energy = 0.0
dft_dc = 0.0
for bl1 in dm:
# (U - J) * (1/2 - n)
self.Sigma[bl1] << Ueff * (0.5 * numpy.identity(self.Nlm) - dm[bl1])
# 1/2 (U - J) * \sum_{\sig} [\sum_{m} n_{m,m \sig} - \sum_{m1,m2} n_{m1,m2 \sig} n_{m2,m1 \sig}]
corr_energy += 0.5 * Ueff * (dm[bl1].trace() - (dm[bl1]*dm[bl1].conj()).sum()).real
# V[n] * n^{\dagger}
dft_dc += (self.Sigma[bl1](0) * dm[bl1].conj()).sum().real
else:
# !!!!!
# !!!!! Mind the order of indices in the 4-index matrix!
# !!!!!
for il1 in xrange(self.Nlm):
for il2 in xrange(self.Nlm):
for il3 in xrange(self.Nlm):
for il4 in xrange(self.Nlm):
for bl1 in dm:
for bl2 in dm:
self.Sigma[bl1][il1, il2] += ur[il1, il3, il2, il4] * dm[bl2][il3, il4]
if bl1 == bl2:
self.Sigma[bl1][il1, il2] -= ur[il1, il3, il4, il2] * dm[bl1][il3, il4]
if mpi.is_master_node() and self.verbosity > 0:
print
print " Sigma (up):"
print_matrix(self.Sigma['up'](0).real)
print
print " Sigma (down):"
print_matrix(self.Sigma['down'](0).real)
# if (self.verbosity==0):
# # No fortran output, so give basic results here
# mpi.report("Atomic occupancy in Hubbard I Solver : %s"%self.atocc)
# mpi.report("Atomic magn. mom. in Hubbard I Solver : %s"%self.atmag)
# transfer the data to the GF class:
if (self.UseSpinOrbit):
nlmtot = self.Nlm*2 # only one block in this case!
else:
nlmtot = self.Nlm
# M={}
# isp=-1
# for a,al in self.gf_struct:
# isp+=1
# M[a] = numpy.array(gf[isp*nlmtot:(isp+1)*nlmtot,isp*nlmtot:(isp+1)*nlmtot,:]).transpose(2,0,1).copy()
# for i in range(min(self.Nmoments,8)):
# tailtempl[a][i+1] = tail[i][isp*nlmtot:(isp+1)*nlmtot,isp*nlmtot:(isp+1)*nlmtot]
#
# #glist = lambda : [ GfImFreq(indices = al, beta = self.beta, n_points = self.Nmsb, data =M[a], tail =self.tailtempl[a])
# # for a,al in self.gf_struct]
# glist = lambda : [ GfImFreq(indices = al, beta = self.beta, n_points = self.Nmsb) for a,al in self.gf_struct]
# self.G = BlockGf(name_list = self.a_list, block_list = glist(),make_copies=False)
#
# self.__copy_Gf(self.G,M,tailtempl)
#
# # Self energy:
# self.G0 <<= iOmega_n
#
# M = [ self.ealmat[isp*nlmtot:(isp+1)*nlmtot,isp*nlmtot:(isp+1)*nlmtot] for isp in range((2*self.Nlm)/nlmtot) ]
# self.G0 -= M
# self.Sigma <<= self.G0 - inverse(self.G)
#
# # invert G0
# self.G0.invert()
def test_distance(G1,G2, dist) :
def f(G1,G2) :
#print abs(G1.data - G2.data)
dS = max(abs(G1.data - G2.data).flatten())
aS = max(abs(G1.data).flatten())
if mpi.is_master_node():
print " Distances:", dS, " vs ", aS * dist
return dS <= aS*dist
return reduce(lambda x,y : x and y, [f(g1,g2) for (i1,g1),(i2,g2) in izip(G1,G2)])
mpi.report("\nChecking Sigma for convergence...\nUsing tolerance %s"%Test_Convergence)
self.Converged = test_distance(self.Sigma,self.Sigma_Old,Test_Convergence)
if self.Converged :
mpi.report("Solver HAS CONVERGED")
else :
mpi.report("Solver has not yet converged")
return corr_energy, dft_dc
def GF_realomega(self, ommin, ommax, N_om, U_int, J_hund, T=None, verbosity=0, broadening=0.01):
"""Calculates the GF and spectral function on the real axis."""
delta_om = (ommax-ommin)/(1.0*(N_om-1))
omega = numpy.zeros([N_om],numpy.complex_)
ur,umn,ujmn=self.__set_umatrix(U=U_int,J=J_hund,T=T)
for i in range(N_om):
omega[i] = ommin + delta_om * i + 1j * broadening
tailtempl={}
for sig,g in self.G:
tailtempl[sig] = copy.deepcopy(g.tail)
for i in range(9): tailtempl[sig][i] *= 0.0
temp = 1.0/self.beta
gf,tail,self.atocc,self.atmag = gf_hi_fullu(e0f=self.ealmat, ur=ur, umn=umn, ujmn=ujmn,
zmsb=omega, nmom=self.Nmoments, ns=self.Nspin, temp=temp, verbosity = verbosity)
# transfer the data to the GF class:
if (self.UseSpinOrbit):
nlmtot = self.Nlm*2 # only one block in this case!
else:
nlmtot = self.Nlm
M={}
isp=-1
for a,al in self.gf_struct:
isp+=1
M[a] = numpy.array(gf[isp*nlmtot:(isp+1)*nlmtot,isp*nlmtot:(isp+1)*nlmtot,:]).transpose(2,0,1).copy()
for i in range(min(self.Nmoments,8)):
tailtempl[a][i+1] = tail[i][isp*nlmtot:(isp+1)*nlmtot,isp*nlmtot:(isp+1)*nlmtot]
#glist = lambda : [ GfReFreq(indices = al, window = (ommin, ommax), n_points = N_om, data = M[a], tail = self.tailtempl[a])
# for a,al in self.gf_struct] # Indices for the upfolded G
glist = lambda : [ GfReFreq(indices = al, window = (ommin, ommax), n_points = N_om) for a,al in self.gf_struct]
self.G = BlockGf(name_list = self.a_list, block_list = glist(),make_copies=False)
self.__copy_Gf(self.G,M,tailtempl)
# Self energy:
self.G0 = self.G.copy()
self.Sigma = self.G.copy()
self.G0 <<= Omega + 1j*broadening
M = [ self.ealmat[isp*nlmtot:(isp+1)*nlmtot,isp*nlmtot:(isp+1)*nlmtot] for isp in range((2*self.Nlm)/nlmtot) ]
self.G0 -= M
self.Sigma <<= self.G0 - inverse(self.G)
self.Sigma.note='ReFreq' # This is important for the put_Sigma routine!!!
#sigmamat = sigma_atomic_fullu(gf=gf,e0f=self.ealmat,zmsb=omega,nlm=self.Nlm,ns=self.Nspin)
#return omega,gf,sigmamat
def __save_eal(self,Filename,it):
f=open(Filename,'a')
f.write('\neff. atomic levels, Iteration %s\n'%it)
for i in range(self.Nlm*self.Nspin):
for j in range(self.Nlm*self.Nspin):
f.write("%10.6f %10.6f "%(self.ealmat[i,j].real,self.ealmat[i,j].imag))
f.write("\n")
f.close()
def __copy_Gf(self,G,data,tail):
""" Copies data and tail to Gf object GF """
for s,g in G:
g.data[:,:,:]=data[s][:,:,:]
for imom in range(1,min(self.Nmoments,8)):
g.tail.data[1+imom,:,:]=tail[s][imom]
def set_atomic_levels(self,eal):
""" Helps to set correctly the variables for the atomic levels from a dictionary."""
assert (type(eal)==DictType), "Give a dictionary to set_atomic_levels!"
cnt = 0
self.ealmat[:,:] *= 0.0
for ind in eal:
self.Eff_Atomic_Levels[ind] = copy.deepcopy(eal[ind])
if self.UseSpinOrbit:
for ii in range(self.Nlm*2):
for jj in range(self.Nlm*2):
self.ealmat[ii,jj] = self.Eff_Atomic_Levels[ind][ii,jj]
else:
for ii in range(self.Nlm):
for jj in range(self.Nlm):
self.ealmat[cnt*self.Nlm + ii,cnt*self.Nlm + jj] = self.Eff_Atomic_Levels[ind][ii,jj]
cnt += 1
def __set_umatrix(self,U,J,T=None):
# U matrix:
# l = (Nlm-1)/2
# If T is specified, it is used to transform the Basis set
Umat = U_matrix(l=self.l, U_int=U, J_hund=J, basis='cubic', T=T)
U, Up = reduce_4index_to_2index(Umat)
return Umat, U, Up