2013-07-17 19:24:07 +02:00
/*******************************************************************************
2013-07-19 13:28:30 +02:00
*
2013-07-17 19:24:07 +02:00
* TRIQS : a Toolbox for Research in Interacting Quantum Systems
*
* Copyright ( C ) 2011 by M . Ferrero , O . Parcollet
*
* TRIQS is free software : you can redistribute it and / or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation , either version 3 of the License , or ( at your option ) any later
* version .
*
* TRIQS is distributed in the hope that it will be useful , but WITHOUT ANY
* WARRANTY ; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE . See the GNU General Public License for more
* details .
*
* You should have received a copy of the GNU General Public License along with
* TRIQS . If not , see < http : //www.gnu.org/licenses/>.
*
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
# include "fourier_matsubara.hpp"
# include <fftw3.h>
namespace triqs { namespace gf {
2013-07-19 13:28:30 +02:00
2013-07-17 19:24:07 +02:00
namespace impl_local_matsubara {
2013-07-19 13:28:30 +02:00
inline dcomplex oneFermion ( dcomplex a , double b , double tau , double beta ) {
return - a * ( b > = 0 ? exp ( - b * tau ) / ( 1 + exp ( - beta * b ) ) : exp ( b * ( beta - tau ) ) / ( 1 + exp ( beta * b ) ) ) ;
2013-07-17 19:24:07 +02:00
}
2013-07-19 13:28:30 +02:00
inline dcomplex oneBoson ( dcomplex a , double b , double tau , double beta ) {
return a * ( b > = 0 ? exp ( - b * tau ) / ( exp ( - beta * b ) - 1 ) : exp ( b * ( beta - tau ) ) / ( 1 - exp ( b * beta ) ) ) ;
2013-07-17 19:24:07 +02:00
}
}
2013-07-19 13:28:30 +02:00
template < typename GfElementType > GfElementType convert_green ( dcomplex const & x ) { return x ; }
template < > double convert_green < double > ( dcomplex const & x ) { return real ( x ) ; }
2013-07-17 19:24:07 +02:00
//--------------------------------------------------------------------------------------
2013-07-19 13:28:30 +02:00
struct impl_worker {
tqa : : vector < dcomplex > g_in , g_out ;
2013-07-19 10:56:26 +02:00
void direct ( gf_view < imfreq , scalar_valued > gw , gf_view < imtime , scalar_valued > const gt ) {
2013-07-19 13:28:30 +02:00
using namespace impl_local_matsubara ;
auto ta = gt ( freq_infty ( ) ) ;
//TO BE MODIFIED AFTER SCALAR IMPLEMENTATION TODO
dcomplex d = ta ( 1 ) ( 0 , 0 ) , A = ta . get_or_zero ( 2 ) ( 0 , 0 ) , B = ta . get_or_zero ( 3 ) ( 0 , 0 ) ;
double b1 = 0 , b2 = 0 , b3 = 0 ;
dcomplex a1 , a2 , a3 ;
double beta = gt . mesh ( ) . domain ( ) . beta ;
auto L = ( gt . mesh ( ) . kind ( ) = = full_bins ? gt . mesh ( ) . size ( ) - 1 : gt . mesh ( ) . size ( ) ) ;
double fact = beta / gt . mesh ( ) . size ( ) ;
dcomplex iomega = dcomplex ( 0.0 , 1.0 ) * std : : acos ( - 1 ) / beta ;
dcomplex iomega2 = iomega * 2 * gt . mesh ( ) . delta ( ) * ( gt . mesh ( ) . kind ( ) = = half_bins ? 0.5 : 0.0 ) ;
g_in . resize ( gt . mesh ( ) . size ( ) ) ;
g_out . resize ( gw . mesh ( ) . size ( ) ) ;
if ( gw . domain ( ) . statistic = = Fermion ) {
b1 = 0 ; b2 = 1 ; b3 = - 1 ;
a1 = d - B ; a2 = ( A + B ) / 2 ; a3 = ( B - A ) / 2 ;
}
else {
b1 = - 0.5 ; b2 = - 1 ; b3 = 1 ;
a1 = 4 * ( d - B ) / 3 ; a2 = B - ( d + A ) / 2 ; a3 = d / 6 + A / 2 + B / 3 ;
}
if ( gw . domain ( ) . statistic = = Fermion ) {
for ( auto & t : gt . mesh ( ) )
g_in ( t . index ( ) ) = fact * exp ( iomega * t ) * ( gt ( t ) - ( oneFermion ( a1 , b1 , t , beta ) + oneFermion ( a2 , b2 , t , beta ) + oneFermion ( a3 , b3 , t , beta ) ) ) ;
}
else {
for ( auto & t : gt . mesh ( ) )
g_in ( t . index ( ) ) = fact * ( gt ( t ) - ( oneBoson ( a1 , b1 , t , beta ) + oneBoson ( a2 , b2 , t , beta ) + oneBoson ( a3 , b3 , t , beta ) ) ) ;
}
details : : fourier_base ( g_in , g_out , L , true ) ;
for ( auto & w : gw . mesh ( ) ) {
gw ( w ) = g_out ( w . index ( ) ) * exp ( iomega2 * w . index ( ) ) + a1 / ( w - b1 ) + a2 / ( w - b2 ) + a3 / ( w - b3 ) ;
}
gw . singularity ( ) = gt . singularity ( ) ; // set tail
2013-07-17 19:24:07 +02:00
}
2013-07-19 13:28:30 +02:00
void inverse ( gf_view < imtime , scalar_valued > gt , gf_view < imfreq , scalar_valued > const gw ) {
using namespace impl_local_matsubara ;
static bool Green_Function_Are_Complex_in_time = false ;
// If the Green function are NOT complex, then one use the symmetry property
// fold the sum and get a factor 2
auto ta = gw ( freq_infty ( ) ) ;
//TO BE MODIFIED AFTER SCALAR IMPLEMENTATION TODO
dcomplex d = ta ( 1 ) ( 0 , 0 ) , A = ta . get_or_zero ( 2 ) ( 0 , 0 ) , B = ta . get_or_zero ( 3 ) ( 0 , 0 ) ;
double b1 , b2 , b3 ;
dcomplex a1 , a2 , a3 ;
double beta = gw . domain ( ) . beta ;
size_t L = gt . mesh ( ) . size ( ) - ( gt . mesh ( ) . kind ( ) = = full_bins ? 1 : 0 ) ; //L can be different from gt.mesh().size() (depending on the mesh kind) and is given to the FFT algorithm
dcomplex iomega = dcomplex ( 0.0 , 1.0 ) * std : : acos ( - 1 ) / beta ;
dcomplex iomega2 = - iomega * 2 * gt . mesh ( ) . delta ( ) * ( gt . mesh ( ) . kind ( ) = = half_bins ? 0.5 : 0.0 ) ;
double fact = ( Green_Function_Are_Complex_in_time ? 1 : 2 ) / beta ;
g_in . resize ( gw . mesh ( ) . size ( ) ) ;
g_out . resize ( gt . mesh ( ) . size ( ) ) ;
if ( gw . domain ( ) . statistic = = Fermion ) {
b1 = 0 ; b2 = 1 ; b3 = - 1 ;
a1 = d - B ; a2 = ( A + B ) / 2 ; a3 = ( B - A ) / 2 ;
}
else {
b1 = - 0.5 ; b2 = - 1 ; b3 = 1 ;
a1 = 4 * ( d - B ) / 3 ; a2 = B - ( d + A ) / 2 ; a3 = d / 6 + A / 2 + B / 3 ;
}
g_in ( ) = 0 ;
for ( auto & w : gw . mesh ( ) ) {
g_in ( w . index ( ) ) = fact * exp ( w . index ( ) * iomega2 ) * ( gw ( w ) - ( a1 / ( w - b1 ) + a2 / ( w - b2 ) + a3 / ( w - b3 ) ) ) ;
}
// for bosons GF(w=0) is divided by 2 to avoid counting it twice
if ( gw . domain ( ) . statistic = = Boson & & ! Green_Function_Are_Complex_in_time ) g_in ( 0 ) * = 0.5 ;
details : : fourier_base ( g_in , g_out , L , false ) ;
// CORRECT FOR COMPLEX G(tau) !!!
typedef double gt_result_type ;
//typedef typename gf<imtime>::mesh_type::gf_result_type gt_result_type;
if ( gw . domain ( ) . statistic = = Fermion ) {
for ( auto & t : gt . mesh ( ) ) {
gt ( t ) = convert_green < gt_result_type > ( g_out ( t . index ( ) = = L ? 0 : t . index ( ) ) * exp ( - iomega * t )
+ oneFermion ( a1 , b1 , t , beta ) + oneFermion ( a2 , b2 , t , beta ) + oneFermion ( a3 , b3 , t , beta ) ) ;
2013-07-17 19:24:07 +02:00
}
}
2013-07-19 13:28:30 +02:00
else {
for ( auto & t : gt . mesh ( ) )
gt ( t ) = convert_green < gt_result_type > ( g_out ( t . index ( ) = = L ? 0 : t . index ( ) )
+ oneBoson ( a1 , b1 , t , beta ) + oneBoson ( a2 , b2 , t , beta ) + oneBoson ( a3 , b3 , t , beta ) ) ;
}
if ( gt . mesh ( ) . kind ( ) = = full_bins )
gt . on_mesh ( L ) = - gt . on_mesh ( 0 ) - convert_green < gt_result_type > ( ta ( 1 ) ( 0 , 0 ) ) ;
// set tail
gt . singularity ( ) = gw . singularity ( ) ;
2013-07-17 19:24:07 +02:00
}
2013-07-19 13:28:30 +02:00
} ;
void fourier_impl ( gf_view < imfreq , scalar_valued > gw , gf_view < imtime , scalar_valued > const gt , scalar_valued ) {
impl_worker w ;
w . direct ( gw , gt ) ;
}
void fourier_impl ( gf_view < imfreq , matrix_valued > gw , gf_view < imtime , matrix_valued > const gt , matrix_valued ) {
impl_worker w ;
2013-07-17 19:24:07 +02:00
for ( size_t n1 = 0 ; n1 < gt . data ( ) . shape ( ) [ 1 ] ; n1 + + )
2013-07-19 13:28:30 +02:00
for ( size_t n2 = 0 ; n2 < gt . data ( ) . shape ( ) [ 2 ] ; n2 + + ) {
auto gw_sl = slice_target_to_scalar ( gw , n1 , n2 ) ;
auto gt_sl = slice_target_to_scalar ( gt , n1 , n2 ) ;
w . direct ( gw_sl , gt_sl ) ;
2013-07-17 19:24:07 +02:00
}
}
2013-07-19 13:28:30 +02:00
//---------------------------------------------------------------------------
void inverse_fourier_impl ( gf_view < imtime , scalar_valued > gt , gf_view < imfreq , scalar_valued > const gw , scalar_valued ) {
impl_worker w ;
w . inverse ( gt , gw ) ;
}
void inverse_fourier_impl ( gf_view < imtime , matrix_valued > gt , gf_view < imfreq , matrix_valued > const gw , matrix_valued ) {
impl_worker w ;
for ( size_t n1 = 0 ; n1 < gw . data ( ) . shape ( ) [ 1 ] ; n1 + + )
for ( size_t n2 = 0 ; n2 < gw . data ( ) . shape ( ) [ 2 ] ; n2 + + ) {
auto gt_sl = slice_target_to_scalar ( gt , n1 , n2 ) ;
auto gw_sl = slice_target_to_scalar ( gw , n1 , n2 ) ;
w . inverse ( gt_sl , gw_sl ) ;
}
}
//---------------------------------------------------------------------------
void triqs_gf_view_assign_delegation ( gf_view < imfreq , scalar_valued > g , gf_keeper < tags : : fourier , imtime , scalar_valued > const & L ) { fourier_impl ( g , L . g , scalar_valued ( ) ) ; }
void triqs_gf_view_assign_delegation ( gf_view < imfreq , matrix_valued > g , gf_keeper < tags : : fourier , imtime , matrix_valued > const & L ) { fourier_impl ( g , L . g , matrix_valued ( ) ) ; }
void triqs_gf_view_assign_delegation ( gf_view < imtime , scalar_valued > g , gf_keeper < tags : : fourier , imfreq , scalar_valued > const & L ) { inverse_fourier_impl ( g , L . g , scalar_valued ( ) ) ; }
void triqs_gf_view_assign_delegation ( gf_view < imtime , matrix_valued > g , gf_keeper < tags : : fourier , imfreq , matrix_valued > const & L ) { inverse_fourier_impl ( g , L . g , matrix_valued ( ) ) ; }
2013-07-17 19:24:07 +02:00
} }