mirror of
https://github.com/triqs/dft_tools
synced 2024-11-01 03:33:50 +01:00
174 lines
6.6 KiB
C++
174 lines
6.6 KiB
C++
|
/*******************************************************************************
|
||
|
*
|
||
|
* TRIQS: a Toolbox for Research in Interacting Quantum Systems
|
||
|
*
|
||
|
* Copyright (C) 2011 by M. Ferrero, O. Parcollet
|
||
|
*
|
||
|
* TRIQS is free software: you can redistribute it and/or modify it under the
|
||
|
* terms of the GNU General Public License as published by the Free Software
|
||
|
* Foundation, either version 3 of the License, or (at your option) any later
|
||
|
* version.
|
||
|
*
|
||
|
* TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
|
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||
|
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
||
|
* details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License along with
|
||
|
* TRIQS. If not, see <http://www.gnu.org/licenses/>.
|
||
|
*
|
||
|
******************************************************************************/
|
||
|
|
||
|
#include "fourier_matsubara.hpp"
|
||
|
#include <fftw3.h>
|
||
|
|
||
|
namespace triqs { namespace gf {
|
||
|
|
||
|
namespace impl_local_matsubara {
|
||
|
|
||
|
inline dcomplex oneFermion(dcomplex a,double b,double tau,double Beta) {
|
||
|
return -a*( b >=0 ? exp(-b*tau)/(1+exp(-Beta*b)) : exp(b*(Beta-tau))/(1+exp(Beta*b)) );
|
||
|
}
|
||
|
|
||
|
inline dcomplex oneBoson(dcomplex a,double b,double tau,double Beta) {
|
||
|
return a*( b >=0 ? exp(-b*tau)/(exp(-Beta*b)-1) : exp(b*(Beta-tau))/(1-exp(b*Beta)) );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//--------------------------------------------------------------------------------------
|
||
|
|
||
|
void fourier_impl (gf_view<imfreq> &gw , gf_view<imtime> const & gt){
|
||
|
|
||
|
// set behavior according to mesh kind
|
||
|
double shift;
|
||
|
size_t L;
|
||
|
switch(gt.mesh().kind()) {
|
||
|
case half_bins: shift = 0.5; L = gt.mesh().size(); break;
|
||
|
case full_bins: shift = 0.0; L = gt.mesh().size()-1; break;
|
||
|
case without_last: shift = 0.0; L = gt.mesh().size(); break;
|
||
|
}
|
||
|
|
||
|
auto ta = gt(freq_infty());
|
||
|
long numberTimeSlices = gt.mesh().size();
|
||
|
double Beta = gt.domain().beta, Pi = std::acos(-1);
|
||
|
dcomplex I(0,1);
|
||
|
tqa::vector<dcomplex> g_in(gt.mesh().size()), g_out (gw.mesh().size());
|
||
|
|
||
|
using namespace impl_local_matsubara;
|
||
|
for (size_t n1=0; n1<gw.data().shape()[1];n1++)
|
||
|
for (size_t n2=0; n2<gw.data().shape()[2];n2++) {
|
||
|
dcomplex d= ta(1)(n1,n2), A= ta.get_or_zero(2)(n1,n2),B = ta.get_or_zero(3)(n1,n2);
|
||
|
//dcomplex d= ta(1)(n1,n2), A= ta(2)(n1,n2),B = ta(3)(n1,n2);
|
||
|
double b1, b2, b3;
|
||
|
dcomplex a1, a2, a3;
|
||
|
if (gw.domain().statistic == Fermion){ b1 = 0; b2 =1; b3 =-1; a1 = d-B; a2 = (A+B)/2; a3 = (B-A)/2; }
|
||
|
else { b1 = -0.5; b2 =-1; b3 =1; a1=4*(d-B)/3; a2=B-(d+A)/2; a3=d/6+A/2+B/3; }
|
||
|
g_in() = 0;
|
||
|
|
||
|
if (gw.domain().statistic == Fermion){
|
||
|
for (auto & t : gt.mesh())
|
||
|
g_in(t.index()) = exp(I*Pi*t/Beta)*( gt(t)(n1,n2) - ( oneFermion(a1,b1,t,Beta) + oneFermion(a2,b2,t,Beta)+ oneFermion(a3,b3,t,Beta) ) );
|
||
|
}
|
||
|
else {
|
||
|
for (auto & t : gt.mesh())
|
||
|
g_in(t.index()) = gt(t)(n1,n2) - ( oneBoson(a1,b1,t,Beta) + oneBoson(a2,b2,t,Beta) + oneBoson(a3,b3,t,Beta) );
|
||
|
}
|
||
|
|
||
|
g_in *= Beta/numberTimeSlices;
|
||
|
|
||
|
details::fourier_base(g_in, g_out, L, true);
|
||
|
|
||
|
for (auto & w : gw.mesh()) {
|
||
|
gw(w)(n1,n2) = g_out(w.index())*exp(2*I*w.index()*shift*Pi/Beta*gt.mesh().delta()) + a1/(w-b1) + a2/(w-b2) + a3/(w-b3);
|
||
|
}
|
||
|
|
||
|
// set tail
|
||
|
gw.singularity() = gt.singularity();
|
||
|
|
||
|
}
|
||
|
}
|
||
|
//---------------------------------------------------------------------------
|
||
|
|
||
|
template<typename GfElementType> GfElementType convert_green ( dcomplex const & x) { return x;}
|
||
|
template<> double convert_green<double> ( dcomplex const & x) { return real(x);}
|
||
|
|
||
|
//---------------------------------------------------------------------------
|
||
|
|
||
|
void inverse_fourier_impl (gf_view<imtime> >, gf_view<imfreq> const & gw) {
|
||
|
|
||
|
// set behavior according to mesh kind
|
||
|
double shift;
|
||
|
size_t L;
|
||
|
switch(gt.mesh().kind()) {
|
||
|
case half_bins: shift = 0.5; L = gt.mesh().size(); break;
|
||
|
case full_bins: shift = 0.0; L = gt.mesh().size()-1; break;
|
||
|
case without_last: shift = 0.0; L = gt.mesh().size(); break;
|
||
|
}
|
||
|
|
||
|
static bool Green_Function_Are_Complex_in_time = false;
|
||
|
auto ta = gw(freq_infty());
|
||
|
|
||
|
double Beta = gt.domain().beta, Pi = std::acos(-1);
|
||
|
dcomplex I(0,1);
|
||
|
tqa::vector<dcomplex> g_in(gw.mesh().size()), g_out (gt.mesh().size());
|
||
|
|
||
|
using namespace impl_local_matsubara;
|
||
|
for (size_t n1=0; n1<gt.data().shape()[1];n1++)
|
||
|
for (size_t n2=0; n2<gt.data().shape()[2];n2++) {
|
||
|
dcomplex d= ta(1)(n1,n2), A= ta.get_or_zero(2)(n1,n2),B = ta.get_or_zero(3)(n1,n2);
|
||
|
//dcomplex d= ta(1)(n1,n2), A= ta(2)(n1,n2),B = ta(3)(n1,n2);
|
||
|
|
||
|
double b1, b2, b3;
|
||
|
dcomplex a1, a2, a3;
|
||
|
if (gw.domain().statistic == Fermion){ b1 = 0; b2 =1; b3 =-1; a1 = d-B; a2 = (A+B)/2; a3 = (B-A)/2; }
|
||
|
else { b1 = -0.5; b2 =-1; b3 =1; a1=4*(d-B)/3; a2=B-(d+A)/2; a3=d/6+A/2+B/3; }
|
||
|
g_in() = 0;
|
||
|
|
||
|
for (auto & w: gw.mesh()) {
|
||
|
g_in(w.index()) = exp(-I*2*w.index()*shift*Pi/Beta*gt.mesh().delta()) * ( gw(w)(n1,n2) - (a1/(w-b1) + a2/(w-b2) + a3/(w-b3)) );
|
||
|
}
|
||
|
// for bosons GF(w=0) is divided by 2 to avoid counting it twice
|
||
|
if (gw.domain().statistic == Boson && !Green_Function_Are_Complex_in_time ) g_in(0) *= 0.5;
|
||
|
|
||
|
details::fourier_base(g_in, g_out, L, false);
|
||
|
|
||
|
// If the Green function are NOT complex, then one use the symmetry property
|
||
|
// fold the sum and get a factor 2
|
||
|
double fact = (Green_Function_Are_Complex_in_time ? 1 : 2);
|
||
|
g_out = g_out*(fact/Beta);
|
||
|
|
||
|
// CORRECT FOR COMPLEX G(tau) !!!
|
||
|
typedef double gt_result_type;
|
||
|
//typedef boost::mpl::if_<gt_result_type;
|
||
|
//typedef typename gf<imtime>::mesh_type::gf_result_type gt_result_type;
|
||
|
|
||
|
if (gw.domain().statistic == Fermion){
|
||
|
for (auto & t : gt.mesh())
|
||
|
gt(t)(n1,n2) = convert_green<gt_result_type> (g_out(t.index())*exp(-I*Pi*t/Beta)
|
||
|
+ oneFermion(a1,b1,t,Beta) + oneFermion(a2,b2,t,Beta)+ oneFermion(a3,b3,t,Beta) );
|
||
|
}
|
||
|
else {
|
||
|
for (auto & t : gt.mesh())
|
||
|
gt(t)(n1,n2) = convert_green<gt_result_type> (g_out(t.index())
|
||
|
+ oneBoson(a1,b1,t,Beta) + oneBoson(a2,b2,t,Beta) + oneBoson(a3,b3,t,Beta) );
|
||
|
}
|
||
|
|
||
|
if (gt.mesh().kind() == full_bins)
|
||
|
gt.on_mesh(L)(n1,n2) = -gt.on_mesh(0)(n1,n2)-convert_green<gt_result_type>(ta(1)(n1,n2));
|
||
|
|
||
|
// set tail
|
||
|
gt.singularity() = gw.singularity();
|
||
|
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
gf_keeper<tags::fourier,imtime> lazy_fourier (gf_view<imtime> const & g) { return g;}
|
||
|
gf_keeper<tags::fourier,imfreq> lazy_inverse_fourier (gf_view<imfreq> const & g) { return g;}
|
||
|
|
||
|
void triqs_gf_view_assign_delegation( gf_view<imfreq> &g, gf_keeper<tags::fourier,imtime> const & L) { fourier_impl (g,L.g);}
|
||
|
void triqs_gf_view_assign_delegation( gf_view<imtime> &g, gf_keeper<tags::fourier,imfreq> const & L) { inverse_fourier_impl(g,L.g);}
|
||
|
|
||
|
}}
|
||
|
|