3
0
mirror of https://github.com/triqs/dft_tools synced 2024-12-23 21:03:45 +01:00
dft_tools/python/triqs_dft_tools/converters/plovasp/proj_shell.py

507 lines
20 KiB
Python
Raw Normal View History

################################################################################
#
# TRIQS: a Toolbox for Research in Interacting Quantum Systems
#
# Copyright (C) 2011 by M. Ferrero, O. Parcollet
#
# DFT tools: Copyright (C) 2011 by M. Aichhorn, L. Pourovskii, V. Vildosola
#
# PLOVasp: Copyright (C) 2015 by O. E. Peil
#
# TRIQS is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software
# Foundation, either version 3 of the License, or (at your option) any later
# version.
#
# TRIQS is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
# details.
#
# You should have received a copy of the GNU General Public License along with
# TRIQS. If not, see <http://www.gnu.org/licenses/>.
#
################################################################################
2015-11-20 18:54:51 +01:00
r"""
plovasp.proj_shell
==================
2015-11-20 18:54:51 +01:00
Storage and manipulation on projector shells.
"""
def issue_warning(message):
"""
Issues a warning.
"""
print()
print(" !!! WARNING !!!: " + message)
print()
import itertools as it
import numpy as np
from . import atm
np.set_printoptions(suppress=True)
################################################################################
################################################################################
#
# class ProjectorShell
#
################################################################################
################################################################################
class ProjectorShell:
"""
Container of projectors related to a specific shell.
The constructor pre-selects a subset of projectors according to
the shell parameters passed from the config-file.
Parameters:
- sh_pars (dict) : shell parameters from the config-file
- proj_raw (numpy.array) : array of raw projectors
"""
def __init__(self, sh_pars, proj_raw, proj_params, kmesh, structure, nc_flag):
self.lorb = sh_pars['lshell']
self.ions = sh_pars['ions']
self.user_index = sh_pars['user_index']
self.corr = sh_pars['corr']
2019-11-21 21:34:37 +01:00
self.ion_sort = [sh_pars['ion_sort']]
self.nc_flag = nc_flag
# try:
# self.tmatrix = sh_pars['tmatrix']
# except KeyError:
# self.tmatrix = None
self.lm1 = self.lorb**2
self.lm2 = (self.lorb+1)**2
self.nion = self.ions['nion']
# Extract ion list and equivalence classes (ion sorts)
self.ion_list = sorted(it.chain(*self.ions['ion_list']))
2019-11-21 21:34:37 +01:00
if self.ion_sort[0] is None:
self.ion_sort = []
for ion in self.ion_list:
for icl, eq_cl in enumerate(self.ions['ion_list']):
if ion in eq_cl:
self.ion_sort.append(icl + 1) # Enumerate classes starting from 1
break
self.ndim = self.extract_tmatrices(sh_pars)
self.extract_projectors(proj_raw, proj_params, kmesh, structure)
################################################################################
#
# extract_tmatrices
#
################################################################################
def extract_tmatrices(self, sh_pars):
"""
Extracts and interprets transformation matrices provided by the
config-parser.
There are two relevant options in 'sh_pars':
'tmatrix' : a transformation matrix applied to all ions in the shell
'tmatrices': interpreted as a set of transformation matrices for each ion.
If both of the options are present a warning is issued and 'tmatrices'
supersedes 'tmatrix'.
Flag 'self.do_transform' is introduced for the optimization purposes
to avoid superfluous matrix multiplications.
"""
nion = self.nion
nm = self.lm2 - self.lm1
if 'tmatrices' in sh_pars:
self.do_transform = True
if 'tmatrix' in sh_pars:
mess = "Both TRANSFORM and TRANSFILE are specified, TRANSFORM will be ignored."
issue_warning(mess)
raw_matrices = sh_pars['tmatrices']
nrow, ncol = raw_matrices.shape
assert nrow%nion == 0, "Number of rows in TRANSFILE must be divisible by the number of ions"
assert ncol%nm == 0, "Number of columns in TRANSFILE must be divisible by the number of orbitals 2*l + 1"
nr = nrow // nion
nsize = ncol // nm
assert nsize in (1, 2, 4), "Number of columns in TRANSFILE must be divisible by either 1, 2, or 4"
#
# Determine the spin-dimension and whether the matrices are real or complex
#
# if nsize == 1 or nsize == 2:
# Matrices (either real or complex) are spin-independent
# nls_dim = nm
# if msize == 2:
# is_complex = True
# else:
# is_complex = False
# elif nsize = 4:
# Matrices are complex and spin-dependent
# nls_dim = 2 * nm
# is_complex = True
#
is_complex = nsize > 1
ns_dim = max(1, nsize // 2)
# Dimension of the orbital subspace
assert nr%ns_dim == 0, "Number of rows in TRANSFILE is not compatible with the spin dimension"
ndim = nr // ns_dim
self.tmatrices = np.zeros((nion, nr, nm * ns_dim), dtype=np.complex128)
if is_complex:
raw_matrices = raw_matrices[:, ::2] + raw_matrices[:, 1::2] * 1j
for io in range(nion):
i1 = io * nr
i2 = (io + 1) * nr
self.tmatrices[io, :, :] = raw_matrices[i1:i2, :]
return ndim
if 'tmatrix' in sh_pars:
self.do_transform = True
raw_matrix = sh_pars['tmatrix']
nrow, ncol = raw_matrix.shape
assert ncol%nm == 0, "Number of columns in TRANSFORM must be divisible by the number of orbitals 2*l + 1"
# Only spin-independent matrices are expected here
nsize = ncol // nm
assert nsize in (1, 2), "Number of columns in TRANSFORM must be divisible by either 1 or 2"
is_complex = nsize > 1
if is_complex:
matrix = raw_matrix[:, ::2] + raw_matrix[:, 1::2] * 1j
else:
matrix = raw_matrix
ndim = nrow
self.tmatrices = np.zeros((nion, nrow, nm), dtype=np.complex128)
for io in range(nion):
self.tmatrices[io, :, :] = raw_matrix
return ndim
# If no transformation matrices are provided define a default one
self.do_transform = False
ns_dim = 2 if self.nc_flag else 1
ndim = nm * ns_dim
# We still need the matrices for the output
self.tmatrices = np.zeros((nion, ndim, ndim), dtype=np.complex128)
for io in range(nion):
self.tmatrices[io, :, :] = np.identity(ndim, dtype=np.complex128)
return ndim
################################################################################
#
# extract_projectors
#
################################################################################
def extract_projectors(self, proj_raw, proj_params, kmesh, structure):
"""
Extracts projectors for the given shell.
Projectors are selected from the raw-projector array 'proj_raw'
according to the shell parameters.
If necessary the projectors are transformed usin 'self.tmatrices'.
"""
assert self.nc_flag == False, "Non-collinear case is not implemented"
# nion = len(self.ion_list)
nion = self.nion
nlm = self.lm2 - self.lm1
_, ns, nk, nb = proj_raw.shape
if self.do_transform:
# TODO: implement a non-collinear case
# for a non-collinear case 'ndim' is 'ns * nm'
ndim = self.tmatrices.shape[1]
self.proj_arr = np.zeros((nion, ns, nk, ndim, nb), dtype=np.complex128)
for ik in range(nk):
kp = kmesh['kpoints'][ik]
for io, ion in enumerate(self.ion_list):
proj_k = np.zeros((ns, nlm, nb), dtype=np.complex128)
qcoord = structure['qcoords'][ion]
# kphase = np.exp(-2.0j * np.pi * np.dot(kp, qcoord))
# kphase = 1.0
for m in range(nlm):
# Here we search for the index of the projector with the given isite/l/m indices
for ip, par in enumerate(proj_params):
if par['isite'] - 1 == ion and par['l'] == self.lorb and par['m'] == m:
proj_k[:, m, :] = proj_raw[ip, :, ik, :] #* kphase
break
for isp in range(ns):
self.proj_arr[io, isp, ik, :, :] = np.dot(self.tmatrices[io, :, :], proj_k[isp, :, :])
else:
# No transformation: just copy the projectors as they are
self.proj_arr = np.zeros((nion, ns, nk, nlm, nb), dtype=np.complex128)
for io, ion in enumerate(self.ion_list):
qcoord = structure['qcoords'][ion]
for m in range(nlm):
# Here we search for the index of the projector with the given isite/l/m indices
for ip, par in enumerate(proj_params):
if par['isite'] - 1 == ion and par['l'] == self.lorb and par['m'] == m:
self.proj_arr[io, :, :, m, :] = proj_raw[ip, :, :, :]
# for ik in range(nk):
# kp = kmesh['kpoints'][ik]
## kphase = np.exp(-2.0j * np.pi * np.dot(kp, qcoord))
# kphase = 1.0
# self.proj_arr[io, :, :, m, :] = proj_raw[ip, :, :, :] # * kphase
break
################################################################################
#
# select_projectors
#
################################################################################
def select_projectors(self, ib_win, ib_min, ib_max):
"""
Selects a subset of projectors corresponding to a given energy window.
"""
self.ib_win = ib_win
self.ib_min = ib_min
self.ib_max = ib_max
nb_max = ib_max - ib_min + 1
# Set the dimensions of the array
nion, ns, nk, nlm, nbtot = self.proj_arr.shape
# !!! Note that the order of the two last indices is different !!!
self.proj_win = np.zeros((nion, ns, nk, nlm, nb_max), dtype=np.complex128)
# Select projectors for a given energy window
ns_band = self.ib_win.shape[1]
for isp in range(ns):
for ik in range(nk):
# TODO: for non-collinear case something else should be done here
is_b = min(isp, ns_band)
ib1 = self.ib_win[ik, is_b, 0]
ib2 = self.ib_win[ik, is_b, 1] + 1
ib_win = ib2 - ib1
self.proj_win[:, isp, ik, :, :ib_win] = self.proj_arr[:, isp, ik, :, ib1:ib2]
################################################################################
#
# density_matrix
#
################################################################################
def density_matrix(self, el_struct, site_diag=True, spin_diag=True):
"""
Returns occupation matrix/matrices for the shell.
"""
nion, ns, nk, nlm, nbtot = self.proj_win.shape
# assert site_diag, "site_diag = False is not implemented"
assert spin_diag, "spin_diag = False is not implemented"
if site_diag:
occ_mats = np.zeros((ns, nion, nlm, nlm), dtype=np.float64)
overlaps = np.zeros((ns, nion, nlm, nlm), dtype=np.float64)
else:
ndim = nion * nlm
occ_mats = np.zeros((ns, 1, ndim, ndim), dtype=np.float64)
overlaps = np.zeros((ns, 1, ndim, ndim), dtype=np.float64)
# self.proj_win = np.zeros((nion, ns, nk, nlm, nb_max), dtype=np.complex128)
kweights = el_struct.kmesh['kweights']
occnums = el_struct.ferw
ib1 = self.ib_min
ib2 = self.ib_max + 1
if site_diag:
for isp in range(ns):
for ik, weight, occ in zip(it.count(), kweights, occnums[isp, :, :]):
for io in range(nion):
proj_k = self.proj_win[io, isp, ik, ...]
occ_mats[isp, io, :, :] += np.dot(proj_k * occ[ib1:ib2],
proj_k.conj().T).real * weight
overlaps[isp, io, :, :] += np.dot(proj_k,
proj_k.conj().T).real * weight
else:
proj_k = np.zeros((ndim, nbtot), dtype=np.complex128)
for isp in range(ns):
for ik, weight, occ in zip(it.count(), kweights, occnums[isp, :, :]):
for io in range(nion):
i1 = io * nlm
i2 = (io + 1) * nlm
proj_k[i1:i2, :] = self.proj_win[io, isp, ik, ...]
occ_mats[isp, 0, :, :] += np.dot(proj_k * occ[ib1:ib2],
proj_k.conj().T).real * weight
overlaps[isp, 0, :, :] += np.dot(proj_k,
proj_k.conj().T).real * weight
# if not symops is None:
# occ_mats = symmetrize_matrix_set(occ_mats, symops, ions, perm_map)
return occ_mats, overlaps
################################################################################
#
# local_hamiltonian
#
################################################################################
def local_hamiltonian(self, el_struct, site_diag=True, spin_diag=True):
"""
Returns occupation matrix/matrices for the shell.
"""
nion, ns, nk, nlm, nbtot = self.proj_win.shape
assert site_diag, "site_diag = False is not implemented"
assert spin_diag, "spin_diag = False is not implemented"
loc_ham = np.zeros((ns, nion, nlm, nlm), dtype=np.complex128)
# self.proj_win = np.zeros((nion, ns, nk, nlm, nb_max), dtype=np.complex128)
kweights = el_struct.kmesh['kweights']
occnums = el_struct.ferw
ib1 = self.ib_min
ib2 = self.ib_max + 1
for isp in range(ns):
for ik, weight, occ, eigk in zip(it.count(), kweights, occnums[isp, :, :],
el_struct.eigvals[:, ib1:ib2, isp]):
for io in range(nion):
proj_k = self.proj_win[io, isp, ik, ...]
loc_ham[isp, io, :, :] += np.dot(proj_k * (eigk - el_struct.efermi),
proj_k.conj().T) * weight
# if not symops is None:
# occ_mats = symmetrize_matrix_set(occ_mats, symops, ions, perm_map)
return loc_ham
################################################################################
#
# density_of_states
#
################################################################################
def density_of_states(self, el_struct, emesh):
"""
Returns projected DOS for the shell.
"""
nion, ns, nk, nlm, nbtot = self.proj_win.shape
# There is a problem with data storage structure of projectors that will
# make life more complicated. The problem is that band-indices of projectors
# for different k-points do not match because we store 'nb_max' values starting
# from 0.
nb_max = self.ib_max - self.ib_min + 1
ns_band = self.ib_win.shape[1]
ne = len(emesh)
dos = np.zeros((ne, ns, nion, nlm))
w_k = np.zeros((nk, nb_max, ns, nion, nlm), dtype=np.complex128)
for isp in range(ns):
for ik in range(nk):
is_b = min(isp, ns_band)
ib1 = self.ib_win[ik, is_b, 0]
ib2 = self.ib_win[ik, is_b, 1] + 1
for ib_g in range(ib1, ib2):
for io in range(nion):
# Note the difference between 'ib' and 'ibn':
# 'ib' counts from 0 to 'nb_k - 1'
# 'ibn' counts from 'ib1 - ib_min' to 'ib2 - ib_min'
ib = ib_g - ib1
ibn = ib_g - self.ib_min
proj_k = self.proj_win[io, isp, ik, :, ib]
w_k[ik, ib, isp, io, :] = proj_k * proj_k.conj()
# eigv_ef = el_struct.eigvals[ik, ib, isp] - el_struct.efermi
itt = el_struct.kmesh['itet'].T
# k-indices are starting from 0 in Python
itt[1:, :] -= 1
for isp in range(ns):
for ib, eigk in enumerate(el_struct.eigvals[:, self.ib_min:self.ib_max+1, isp].T):
for ie, e in enumerate(emesh):
eigk_ef = eigk - el_struct.efermi
cti = atm.dos_tetra_weights_3d(eigk_ef, e, itt)
for im in range(nlm):
for io in range(nion):
dos[ie, isp, io, im] += np.sum((cti * w_k[itt[1:, :], ib, isp, io, im].real).sum(0) * itt[0, :])
dos *= 2 * el_struct.kmesh['volt']
# for isp in range(ns):
# for ik, weight, occ in zip(it.count(), kweights, occnums[isp, :, :]):
# for io in range(nion):
# proj_k = self.proj_win[isp, io, ik, ...]
# occ_mats[isp, io, :, :] += np.dot(proj_k * occ[ib1:ib2],
# proj_k.conj().T).real * weight
# overlaps[isp, io, :, :] += np.dot(proj_k,
# proj_k.conj().T).real * weight
# if not symops is None:
# occ_mats = symmetrize_matrix_set(occ_mats, symops, ions, perm_map)
return dos
################################################################################
################################################################################
#
# class ProjectorShell
#
################################################################################
################################################################################
class ComplementShell(ProjectorShell):
"""
Container of projectors related to a complement shell.
Parameters:
- sh_pars (dict) : shell parameters from the config-file
- proj_compl (numpy.array) : array of complement projectors
"""
def __init__(self, sh_pars, proj_compl, nc_flag):
self.lorb = sh_pars['lshell']
self.ions = sh_pars['ions']
self.user_index = sh_pars['user_index']
self.corr = sh_pars['corr']
self.nc_flag = nc_flag
2019-06-28 14:47:15 +02:00
self.ib_min = sh_pars['ib_min']
self.ib_max = sh_pars['ib_max']
self.ib_win = sh_pars['ib_win']
#self.lm1 = self.lorb**2
#self.lm2 = (self.lorb+1)**2
self.nion = self.ions['nion']
# Extract ion list and equivalence classes (ion sorts)
self.ion_list = sorted(it.chain(*self.ions['ion_list']))
self.ion_sort = []
for ion in self.ion_list:
for icl, eq_cl in enumerate(self.ions['ion_list']):
if ion in eq_cl:
self.ion_sort.append(icl + 1) # Enumerate classes starting from 1
break
self.ndim = proj_compl.shape[3]
self.proj_win = proj_compl
def extract_tmatrices(self, sh_pars):
2019-06-27 16:26:22 +02:00
raise Exception('not implemented')
def local_hamiltonian(self, el_struct, site_diag=True, spin_diag=True):
2019-06-27 16:26:22 +02:00
raise Exception('not implemented')
def density_matrix(self, el_struct, site_diag=True, spin_diag=True):
2019-06-27 16:26:22 +02:00
raise Exception('not implemented')
2019-06-28 14:47:15 +02:00
#def density_of_states(self, el_struct, emesh):
# raise Exception('not implemented')