3
0
mirror of https://github.com/triqs/dft_tools synced 2024-12-21 11:53:41 +01:00

Restructured the source files

The classes ProjectorShell and ProjectorGroup are now defined in
different source files. This makes 'plotools.py' only contain
routines that control the data flows, including consistency checks
and output.
This commit is contained in:
Oleg E. Peil 2015-11-13 18:15:21 +01:00
parent b285f37eca
commit 61395b12fa
4 changed files with 585 additions and 511 deletions

View File

@ -1,7 +1,6 @@
import itertools as it
import numpy as np
import vasp.atm.c_atm_dos as c_atm_dos
np.set_printoptions(suppress=True)
@ -50,39 +49,6 @@ class Projector:
return (overlap, over_eig)
################################################################################
#
# orthogonalize_projector_matrix()
#
################################################################################
def orthogonalize_projector_matrix(p_matrix):
"""
Orthogonalizes a projector defined by a rectangular matrix `p_matrix`.
Parameters
----------
p_matrix (numpy.array[complex]) : matrix `Nm x Nb`, where `Nm` is
the number of orbitals, `Nb` number of bands
Returns
-------
Orthogonalized projector matrix, initial overlap matrix and its eigenvalues.
"""
# Overlap matrix O_{m m'} = \sum_{v} P_{m v} P^{*}_{v m'}
overlap = np.dot(p_matrix, p_matrix.conj().T)
# Calculate [O^{-1/2}]_{m m'}
eig, eigv = np.linalg.eigh(overlap)
assert np.all(eig > 0.0), ("Negative eigenvalues of the overlap matrix:"
"projectors are ill-defined")
sqrt_eig = np.diag(1.0 / np.sqrt(eig))
shalf = np.dot(eigv, np.dot(sqrt_eig, eigv.conj().T))
# Apply \tilde{P}_{m v} = \sum_{m'} [O^{-1/2}]_{m m'} P_{m' v}
p_ortho = np.dot(shalf, p_matrix)
return (p_ortho, overlap, eig)
################################################################################
# check_data_consistency()
################################################################################
@ -108,481 +74,6 @@ def check_data_consistency(pars, el_struct):
raise Exception(errmsg)
################################################################################
# select_bands()
################################################################################
def select_bands(eigvals, emin, emax):
"""
Select a subset of bands lying within a given energy window.
The band energies are assumed to be sorted in an ascending order.
Parameters
----------
eigvals (numpy.array) : all eigenvalues
emin, emax (float) : energy window
Returns
-------
ib_win, nb_min, nb_max :
"""
# Sanity check
if emin > eigvals.max() or emax < eigvals.min():
raise Exception("Energy window does not overlap with the band structure")
nk, nband, ns_band = eigvals.shape
ib_win = np.zeros((nk, ns_band, 2), dtype=np.int32)
ib_min = 10000000
ib_max = 0
for isp in xrange(ns_band):
for ik in xrange(nk):
for ib in xrange(nband):
en = eigvals[ik, ib, isp]
if en >= emin:
break
ib1 = ib
for ib in xrange(ib1, nband):
en = eigvals[ik, ib, isp]
if en > emax:
break
else:
# If we reached the last band add 1 to get the correct bound
ib += 1
ib2 = ib - 1
assert ib1 <= ib2, "No bands inside the window for ik = %s"%(ik)
ib_win[ik, isp, 0] = ib1
ib_win[ik, isp, 1] = ib2
ib_min = min(ib_min, ib1)
ib_max = max(ib_max, ib2)
return ib_win, ib_min, ib_max
################################################################################
################################################################################
#
# class ProjectorGroup
#
################################################################################
################################################################################
class ProjectorGroup:
"""
Container of projectors defined within a certain energy window.
The constructor selects a subset of projectors according to
the parameters from the config-file (passed in `pars`).
Parameters:
- gr_pars (dict) : group parameters from the config-file
- shells ([ProjectorShell]) : array of ProjectorShell objects
- eigvals (numpy.array) : array of KS eigenvalues
"""
def __init__(self, gr_pars, shells, eigvals, ferw):
"""
Constructor
"""
self.emin, self.emax = gr_pars['ewindow']
self.ishells = gr_pars['shells']
self.ortho = gr_pars['normalize']
self.normion = gr_pars['normion']
self.shells = shells
# Determine the minimum and maximum band numbers
ib_win, ib_min, ib_max = select_bands(eigvals, self.emin, self.emax)
self.ib_win = ib_win
self.ib_min = ib_min
self.ib_max = ib_max
self.nb_max = ib_max - ib_min + 1
# Select projectors within the energy window
for ish in self.ishells:
shell = self.shells[ish]
shell.select_projectors(ib_win, ib_min, ib_max)
################################################################################
#
# nelect_window
#
################################################################################
def nelect_window(self, el_struct):
"""
Determines the total number of electrons within the window.
"""
self.nelect = 0
nk, ns_band, _ = self.ib_win.shape
rspin = 2.0 if ns_band == 1 else 1.0
for isp in xrange(ns_band):
for ik in xrange(nk):
ib1 = self.ib_win[ik, isp, 0]
ib2 = self.ib_win[ik, isp, 1]
occ = el_struct.ferw[isp, ik, ib1:ib2]
kwght = el_struct.kmesh['kweights'][ik]
self.nelect += occ.sum() * kwght * rspin
return self.nelect
################################################################################
#
# orthogonalize
#
################################################################################
def orthogonalize(self):
"""
Orthogonalize a group of projectors.
"""
# Quick exit if no normalization is requested
if not self.ortho:
return
# TODO: add the case of 'normion = True'
assert not self.normion, "'NORMION = True' is not yet implemented"
# Determine the dimension of the projector matrix
# and map the blocks to the big matrix
i1_bl = 0
bl_map = [{} for ish in self.ishells]
for ish in self.ishells:
_shell = self.shells[ish]
nion, ns, nk, nlm, nb_max = _shell.proj_win.shape
bmat_bl = [] # indices corresponding to a big block matrix
for ion in xrange(nion):
i2_bl = i1_bl + nlm
bmat_bl.append((i1_bl, i2_bl))
i1_bl = i2_bl
bl_map[ish]['bmat_blocks'] = bmat_bl
ndim = i2_bl
p_mat = np.zeros((ndim, nb_max), dtype=np.complex128)
for isp in xrange(ns):
for ik in xrange(nk):
nb = self.ib_win[ik, isp, 1] - self.ib_win[ik, isp, 0] + 1
# Combine all projectors of the group to one block projector
for ish in self.ishells:
shell = self.shells[ish]
blocks = bl_map[ish]['bmat_blocks']
for ion in xrange(nion):
i1, i2 = blocks[ion]
p_mat[i1:i2, :nb] = shell.proj_win[ion, isp, ik, :nlm, :nb]
# Now orthogonalize the obtained block projector
p_orth, overl, eig = orthogonalize_projector_matrix(p_mat)
# print "ik = ", ik
# print overl.real
# Distribute back projectors in the same order
for ish in self.ishells:
shell = self.shells[ish]
blocks = bl_map[ish]['bmat_blocks']
for ion in xrange(nion):
i1, i2 = blocks[ion]
shell.proj_win[ion, isp, ik, :nlm, :nb] = p_orth[i1:i2, :nb]
################################################################################
################################################################################
#
# class ProjectorShell
#
################################################################################
################################################################################
class ProjectorShell:
"""
Container of projectors related to a specific shell.
The constructor pre-selects a subset of projectors according to
the shell parameters passed from the config-file.
Parameters:
- sh_pars (dict) : shell parameters from the config-file
- proj_raw (numpy.array) : array of raw projectors
"""
def __init__(self, sh_pars, proj_raw, proj_params, nc_flag):
self.lorb = sh_pars['lshell']
self.ion_list = sh_pars['ion_list']
self.user_index = sh_pars['user_index']
self.nc_flag = nc_flag
# try:
# self.tmatrix = sh_pars['tmatrix']
# except KeyError:
# self.tmatrix = None
self.lm1 = self.lorb**2
self.lm2 = (self.lorb+1)**2
self.ndim = self.extract_tmatrices(sh_pars)
# if self.tmatrix is None:
# self.ndim = self.lm2 - self.lm1
# else:
## TODO: generalize this to a tmatrix for every ion
# self.ndim = self.tmatrix.shape[0]
# Pre-select a subset of projectors (this should be an array view => no memory is wasted)
# !!! This sucks but I have to change the order of 'ib' and 'ilm' indices here
# This should perhaps be done right after the projector array is read from PLOCAR
# self.proj_arr = proj_raw[self.ion_list, :, :, :, self.lm1:self.lm2].transpose((0, 1, 2, 4, 3))
# We want to select projectors from 'proj_raw' and form an array
# self.proj_arr[nion, ns, nk, nlm, nb]
# TODO: think of a smart way of copying the selected projectors
# perhaps, by redesigning slightly the structure of 'proj_arr' and 'proj_win'
# or by storing only a mapping between site/orbitals and indices of 'proj_raw'
# iproj_l = []
nion = len(self.ion_list)
nlm = self.lm2 - self.lm1
_, ns, nk, nb = proj_raw.shape
self.proj_arr = np.zeros((nion, ns, nk, nlm, nb), dtype=np.complex128)
for io, ion in enumerate(self.ion_list):
for m in xrange(nlm):
# Here we search for the index of the projector with the given isite/l/m indices
for ip, par in enumerate(proj_params):
if par['isite'] - 1 == ion and par['l'] == self.lorb and par['m'] == m:
# iproj_l.append(ip)
self.proj_arr[io, :, :, m, :] = proj_raw[ip, :, :, :]
break
# self.proj_arr = proj_raw[iproj_l, :, :, :].transpose((1, 2, 0, 3))
################################################################################
#
# extract_tmatrices
#
################################################################################
def extract_tmatrices(self, sh_pars):
"""
Extracts and interprets transformation matrices provided by the
config-parser.
There are two relevant options in 'sh_pars':
'tmatrix' : a transformation matrix applied to all ions in the shell
'tmatrices': interpreted as a set of transformation matrices for each ion.
If both of the options are present a warning is issued and 'tmatrices'
supersedes 'tmatrix'.
"""
nion = len(self.ion_list)
nm = self.lm2 - self.lm1
if 'tmatrices' in sh_pars:
if 'tmatrix' in sh_pars:
mess = "Both TRANSFORM and TRANSFILE are specified, TRANSFORM will be ignored."
issue_warning(mess)
raw_matrices = sh_pars['tmatrices']
nrow, ncol = raw_matrices.shape
assert nrow%nion == 0, "Number of rows in TRANSFILE must be divisible by the number of ions"
assert ncol%nm == 0, "Number of columns in TRANSFILE must be divisible by the number of orbitals 2*l + 1"
nr = nrow / nion
nsize = ncol / nm
assert nsize in (1, 2, 4), "Number of columns in TRANSFILE must be divisible by either 1, 2, or 4"
#
# Determine the spin-dimension and whether the matrices are real or complex
#
# if nsize == 1 or nsize == 2:
# Matrices (either real or complex) are spin-independent
# nls_dim = nm
# if msize == 2:
# is_complex = True
# else:
# is_complex = False
# elif nsize = 4:
# Matrices are complex and spin-dependent
# nls_dim = 2 * nm
# is_complex = True
#
is_complex = nsize > 1
ns_dim = max(1, nsize / 2)
# Dimension of the orbital subspace
assert nr%ns_dim == 0, "Number of rows in TRANSFILE is not compatible with the spin dimension"
ndim = nr / ns_dim
self.tmatrices = np.zeros((nion, nr, nm * ns_dim), dtype=np.complex128)
if is_complex:
raw_matrices = raw_matrices[:, ::2] + raw_matrices[:, 1::2] * 1j
for io in xrange(nion):
i1 = io * nr
i2 = (io + 1) * nr
self.tmatrices[io, :, :] = raw_matrices[i1:i2, :]
return ndim
if 'tmatrix' in sh_pars:
raw_matrix = sh_pars['tmatrix']
nrow, ncol = raw_matrix.shape
assert ncol%nm == 0, "Number of columns in TRANSFORM must be divisible by the number of orbitals 2*l + 1"
# Only spin-independent matrices are expected here
nsize = ncol / nm
assert nsize in (1, 2), "Number of columns in TRANSFORM must be divisible by either 1 or 2"
is_complex = nsize > 1
if is_complex:
matrix = raw_matrix[:, ::2] + raw_matrix[:, 1::2] * 1j
else:
matrix = raw_matrix
ndim = nrow
self.tmatrices = np.zeros((nion, nrow, nm), dtype=np.complex128)
for io in xrange(nion):
self.tmatrices[io, :, :] = raw_matrix
return ndim
# If no transformation matrices are provided define a default one
ns_dim = 2 if self.nc_flag else 1
ndim = nm * ns_dim
self.tmatrices = np.zeros((nion, ndim, ndim), dtype=np.complex128)
for io in xrange(nion):
self.tmatrices[io, :, :] = np.identity(ndim, dtype=np.complex128)
return ndim
################################################################################
#
# select_projectors
#
################################################################################
def select_projectors(self, ib_win, ib_min, ib_max):
"""
Selects a subset of projectors corresponding to a given energy window.
"""
self.ib_win = ib_win
self.ib_min = ib_min
self.ib_max = ib_max
nb_max = ib_max - ib_min + 1
# Set the dimensions of the array
nion, ns, nk, nlm, nbtot = self.proj_arr.shape
# !!! Note that the order of the two last indices is different !!!
self.proj_win = np.zeros((nion, ns, nk, nlm, nb_max), dtype=np.complex128)
# Select projectors for a given energy window
ns_band = self.ib_win.shape[1]
for isp in xrange(ns):
for ik in xrange(nk):
# TODO: for non-collinear case something else should be done here
is_b = min(isp, ns_band)
ib1 = self.ib_win[ik, is_b, 0]
ib2 = self.ib_win[ik, is_b, 1] + 1
ib_win = ib2 - ib1
self.proj_win[:, isp, ik, :, :ib_win] = self.proj_arr[:, isp, ik, :, ib1:ib2]
################################################################################
#
# density_matrix
#
################################################################################
def density_matrix(self, el_struct, site_diag=True, spin_diag=True):
"""
Returns occupation matrix/matrices for the shell.
"""
nion, ns, nk, nlm, nbtot = self.proj_win.shape
assert site_diag, "site_diag = False is not implemented"
assert spin_diag, "spin_diag = False is not implemented"
occ_mats = np.zeros((ns, nion, nlm, nlm), dtype=np.float64)
overlaps = np.zeros((ns, nion, nlm, nlm), dtype=np.float64)
# self.proj_win = np.zeros((nion, ns, nk, nlm, nb_max), dtype=np.complex128)
kweights = el_struct.kmesh['kweights']
occnums = el_struct.ferw
ib1 = self.ib_min
ib2 = self.ib_max + 1
for isp in xrange(ns):
for ik, weight, occ in it.izip(it.count(), kweights, occnums[isp, :, :]):
for io in xrange(nion):
proj_k = self.proj_win[io, isp, ik, ...]
occ_mats[isp, io, :, :] += np.dot(proj_k * occ[ib1:ib2],
proj_k.conj().T).real * weight
overlaps[isp, io, :, :] += np.dot(proj_k,
proj_k.conj().T).real * weight
# if not symops is None:
# occ_mats = symmetrize_matrix_set(occ_mats, symops, ions, perm_map)
return occ_mats, overlaps
################################################################################
#
# density_of_states
#
################################################################################
def density_of_states(self, el_struct, emesh):
"""
Returns projected DOS for the shell.
"""
nion, ns, nk, nlm, nbtot = self.proj_win.shape
# There is a problem with data storage structure of projectors that will
# make life more complicated. The problem is that band-indices of projectors
# for different k-points do not match because we store 'nb_max' values starting
# from 0.
nb_max = self.ib_max - self.ib_min + 1
ns_band = self.ib_win.shape[1]
ne = len(emesh)
dos = np.zeros((ne, ns, nion, nlm))
w_k = np.zeros((nk, nb_max, ns, nion, nlm), dtype=np.complex128)
for isp in xrange(ns):
for ik in xrange(nk):
is_b = min(isp, ns_band)
ib1 = self.ib_win[ik, is_b, 0]
ib2 = self.ib_win[ik, is_b, 1] + 1
for ib_g in xrange(ib1, ib2):
for io in xrange(nion):
# Note the difference between 'ib' and 'ibn':
# 'ib' counts from 0 to 'nb_k - 1'
# 'ibn' counts from 'ib1 - ib_min' to 'ib2 - ib_min'
ib = ib_g - ib1
ibn = ib_g - self.ib_min
proj_k = self.proj_win[io, isp, ik, :, ib]
w_k[ik, ib, isp, io, :] = proj_k * proj_k.conj()
# eigv_ef = el_struct.eigvals[ik, ib, isp] - el_struct.efermi
itt = el_struct.kmesh['itet'].T
# k-indices are starting from 0 in Python
itt[1:, :] -= 1
for isp in xrange(ns):
for ib, eigk in enumerate(el_struct.eigvals[:, self.ib_min:self.ib_max+1, isp].T):
for ie, e in enumerate(emesh):
eigk_ef = eigk - el_struct.efermi
cti = c_atm_dos.dos_weights_3d(eigk_ef, e, itt)
for im in xrange(nlm):
for io in xrange(nion):
dos[ie, isp, io, im] += np.sum((cti * w_k[itt[1:, :], ib, isp, io, im].real).sum(0) * itt[0, :])
dos *= 2 * el_struct.kmesh['volt']
# for isp in xrange(ns):
# for ik, weight, occ in it.izip(it.count(), kweights, occnums[isp, :, :]):
# for io in xrange(nion):
# proj_k = self.proj_win[isp, io, ik, ...]
# occ_mats[isp, io, :, :] += np.dot(proj_k * occ[ib1:ib2],
# proj_k.conj().T).real * weight
# overlaps[isp, io, :, :] += np.dot(proj_k,
# proj_k.conj().T).real * weight
# if not symops is None:
# occ_mats = symmetrize_matrix_set(occ_mats, symops, ions, perm_map)
return dos
################################################################################
#

269
python/vasp/proj_group.py Normal file
View File

@ -0,0 +1,269 @@
import numpy as np
np.set_printoptions(suppress=True)
################################################################################
#
# orthogonalize_projector_matrix()
#
################################################################################
def orthogonalize_projector_matrix(p_matrix):
"""
Orthogonalizes a projector defined by a rectangular matrix `p_matrix`.
Parameters
----------
p_matrix (numpy.array[complex]) : matrix `Nm x Nb`, where `Nm` is
the number of orbitals, `Nb` number of bands
Returns
-------
Orthogonalized projector matrix, initial overlap matrix and its eigenvalues.
"""
# Overlap matrix O_{m m'} = \sum_{v} P_{m v} P^{*}_{v m'}
overlap = np.dot(p_matrix, p_matrix.conj().T)
# Calculate [O^{-1/2}]_{m m'}
eig, eigv = np.linalg.eigh(overlap)
assert np.all(eig > 0.0), ("Negative eigenvalues of the overlap matrix:"
"projectors are ill-defined")
sqrt_eig = np.diag(1.0 / np.sqrt(eig))
shalf = np.dot(eigv, np.dot(sqrt_eig, eigv.conj().T))
# Apply \tilde{P}_{m v} = \sum_{m'} [O^{-1/2}]_{m m'} P_{m' v}
p_ortho = np.dot(shalf, p_matrix)
return (p_ortho, overlap, eig)
################################################################################
#
# select_bands()
#
################################################################################
def select_bands(eigvals, emin, emax):
"""
Select a subset of bands lying within a given energy window.
The band energies are assumed to be sorted in an ascending order.
Parameters
----------
eigvals (numpy.array) : all eigenvalues
emin, emax (float) : energy window
Returns
-------
ib_win, nb_min, nb_max :
"""
# Sanity check
if emin > eigvals.max() or emax < eigvals.min():
raise Exception("Energy window does not overlap with the band structure")
nk, nband, ns_band = eigvals.shape
ib_win = np.zeros((nk, ns_band, 2), dtype=np.int32)
ib_min = 10000000
ib_max = 0
for isp in xrange(ns_band):
for ik in xrange(nk):
for ib in xrange(nband):
en = eigvals[ik, ib, isp]
if en >= emin:
break
ib1 = ib
for ib in xrange(ib1, nband):
en = eigvals[ik, ib, isp]
if en > emax:
break
else:
# If we reached the last band add 1 to get the correct bound
ib += 1
ib2 = ib - 1
assert ib1 <= ib2, "No bands inside the window for ik = %s"%(ik)
ib_win[ik, isp, 0] = ib1
ib_win[ik, isp, 1] = ib2
ib_min = min(ib_min, ib1)
ib_max = max(ib_max, ib2)
return ib_win, ib_min, ib_max
################################################################################
################################################################################
#
# class ProjectorGroup
#
################################################################################
################################################################################
class ProjectorGroup:
"""
Container of projectors defined within a certain energy window.
The constructor selects a subset of projectors according to
the parameters from the config-file (passed in `pars`).
Parameters:
- gr_pars (dict) : group parameters from the config-file
- shells ([ProjectorShell]) : array of ProjectorShell objects
- eigvals (numpy.array) : array of KS eigenvalues
"""
def __init__(self, gr_pars, shells, eigvals, ferw):
"""
Constructor
"""
self.emin, self.emax = gr_pars['ewindow']
self.ishells = gr_pars['shells']
self.ortho = gr_pars['normalize']
self.normion = gr_pars['normion']
self.shells = shells
# Determine the minimum and maximum band numbers
ib_win, ib_min, ib_max = select_bands(eigvals, self.emin, self.emax)
self.ib_win = ib_win
self.ib_min = ib_min
self.ib_max = ib_max
self.nb_max = ib_max - ib_min + 1
# Select projectors within the energy window
for ish in self.ishells:
shell = self.shells[ish]
shell.select_projectors(ib_win, ib_min, ib_max)
################################################################################
#
# nelect_window
#
################################################################################
def nelect_window(self, el_struct):
"""
Determines the total number of electrons within the window.
"""
self.nelect = 0
nk, ns_band, _ = self.ib_win.shape
rspin = 2.0 if ns_band == 1 else 1.0
for isp in xrange(ns_band):
for ik in xrange(nk):
ib1 = self.ib_win[ik, isp, 0]
ib2 = self.ib_win[ik, isp, 1]
occ = el_struct.ferw[isp, ik, ib1:ib2]
kwght = el_struct.kmesh['kweights'][ik]
self.nelect += occ.sum() * kwght * rspin
return self.nelect
################################################################################
#
# orthogonalize
#
################################################################################
def orthogonalize(self):
"""
Orthogonalize a group of projectors.
There are two options for orthogonalizing projectors:
1. one ensures orthogonality on each site (NORMION = True);
2. one ensures orthogonality for subsets of sites (NORMION = False),
as, e.g., in cluster calculations.
In order to handle various cases the strategy is first to build a
mapping that selects appropriate blocks of raw projectors, forms a
matrix consisting of these blocks, orthogonalize the matrix, and use
the mapping again to write the orthogonalized projectors back to the
projector arrays. Note that the blocks can comprise several projector arrays
contained in different projector shells.
Mapping is defined as a list of 'block_maps' corresponding to subsets
of projectors to be orthogonalized. Each subset corresponds to a subset of sites
and spans all orbital indices. defined by 'bl_map' as
bl_map = [((i1_start, i1_end), (i1_shell, i1_ion)),
((i2_start, i2_end), (i2_shell, i2_ion)),
...],
where `iX_start`, `iX_end` is the range of indices of the block matrix
(in Python convention `iX_end = iX_last + 1`, with `iX_last` being the last index
of the range),
`iX_shell` and `iX_ion` the shell and site indices. The length of the range
should be consistent with 'nlm' dimensions of a corresponding shell, i.e.,
`iX_end - iX_start = nlm[iX_shell]`.
Consider particular cases:
1. Orthogonality is ensured on each site (NORMION = True).
For each site 'ion' we have the following mapping:
block_maps = [bl_map[ion] for ion in xrange(shell.nion)
for shell in shells]
bl_map = [((i1_start, i1_end), (i1_shell, ion)),
((i2_start, i2_end), (i2_shell, ion)),
...],
2. Orthogonality is ensured on all sites within the group (NORMION = True).
The mapping:
block_maps = [bl_map]
bl_map = [((i1_start, i1_end), (i1_shell, i1_shell.ion1)),
((i1_start, i1_end), (i1_shell, i1_shell.ion2)),
...
((i2_start, i2_end), (i2_shell, i2_shell.ion1)),
((i2_start, i2_end), (i2_shell, i2_shell.ion2)),
...],
"""
# Quick exit if no normalization is requested
if not self.ortho:
return
# TODO: add the case of 'normion = True'
assert not self.normion, "'NORMION = True' is not yet implemented"
# Determine the dimension of the projector matrix
# and map the blocks to the big matrix
i1_bl = 0
bl_map = [{} for ish in self.ishells]
for ish in self.ishells:
_shell = self.shells[ish]
nion, ns, nk, nlm, nb_max = _shell.proj_win.shape
bmat_bl = [] # indices corresponding to a big block matrix
for ion in xrange(nion):
i2_bl = i1_bl + nlm
bmat_bl.append((i1_bl, i2_bl))
i1_bl = i2_bl
bl_map[ish]['bmat_blocks'] = bmat_bl
ndim = i2_bl
p_mat = np.zeros((ndim, nb_max), dtype=np.complex128)
for isp in xrange(ns):
for ik in xrange(nk):
nb = self.ib_win[ik, isp, 1] - self.ib_win[ik, isp, 0] + 1
# Combine all projectors of the group to one block projector
for ish in self.ishells:
shell = self.shells[ish]
blocks = bl_map[ish]['bmat_blocks']
for ion in xrange(nion):
i1, i2 = blocks[ion]
p_mat[i1:i2, :nb] = shell.proj_win[ion, isp, ik, :nlm, :nb]
# Now orthogonalize the obtained block projector
p_orth, overl, eig = orthogonalize_projector_matrix(p_mat)
# print "ik = ", ik
# print overl.real
# Distribute back projectors in the same order
for ish in self.ishells:
shell = self.shells[ish]
blocks = bl_map[ish]['bmat_blocks']
for ion in xrange(nion):
i1, i2 = blocks[ion]
shell.proj_win[ion, isp, ik, :nlm, :nb] = p_orth[i1:i2, :nb]

314
python/vasp/proj_shell.py Normal file
View File

@ -0,0 +1,314 @@
import itertools as it
import numpy as np
import vasp.atm.c_atm_dos as c_atm_dos
np.set_printoptions(suppress=True)
def issue_warning(message):
"""
Issues a warning.
"""
print
print " !!! WARNING !!!: " + message
print
################################################################################
################################################################################
#
# class ProjectorShell
#
################################################################################
################################################################################
class ProjectorShell:
"""
Container of projectors related to a specific shell.
The constructor pre-selects a subset of projectors according to
the shell parameters passed from the config-file.
Parameters:
- sh_pars (dict) : shell parameters from the config-file
- proj_raw (numpy.array) : array of raw projectors
"""
def __init__(self, sh_pars, proj_raw, proj_params, nc_flag):
self.lorb = sh_pars['lshell']
self.ion_list = sh_pars['ion_list']
self.user_index = sh_pars['user_index']
self.nc_flag = nc_flag
# try:
# self.tmatrix = sh_pars['tmatrix']
# except KeyError:
# self.tmatrix = None
self.lm1 = self.lorb**2
self.lm2 = (self.lorb+1)**2
self.ndim = self.extract_tmatrices(sh_pars)
# if self.tmatrix is None:
# self.ndim = self.lm2 - self.lm1
# else:
## TODO: generalize this to a tmatrix for every ion
# self.ndim = self.tmatrix.shape[0]
# Pre-select a subset of projectors (this should be an array view => no memory is wasted)
# !!! This sucks but I have to change the order of 'ib' and 'ilm' indices here
# This should perhaps be done right after the projector array is read from PLOCAR
# self.proj_arr = proj_raw[self.ion_list, :, :, :, self.lm1:self.lm2].transpose((0, 1, 2, 4, 3))
# We want to select projectors from 'proj_raw' and form an array
# self.proj_arr[nion, ns, nk, nlm, nb]
# TODO: think of a smart way of copying the selected projectors
# perhaps, by redesigning slightly the structure of 'proj_arr' and 'proj_win'
# or by storing only a mapping between site/orbitals and indices of 'proj_raw'
# iproj_l = []
nion = len(self.ion_list)
nlm = self.lm2 - self.lm1
_, ns, nk, nb = proj_raw.shape
self.proj_arr = np.zeros((nion, ns, nk, nlm, nb), dtype=np.complex128)
for io, ion in enumerate(self.ion_list):
for m in xrange(nlm):
# Here we search for the index of the projector with the given isite/l/m indices
for ip, par in enumerate(proj_params):
if par['isite'] - 1 == ion and par['l'] == self.lorb and par['m'] == m:
# iproj_l.append(ip)
self.proj_arr[io, :, :, m, :] = proj_raw[ip, :, :, :]
break
# self.proj_arr = proj_raw[iproj_l, :, :, :].transpose((1, 2, 0, 3))
################################################################################
#
# extract_tmatrices
#
################################################################################
def extract_tmatrices(self, sh_pars):
"""
Extracts and interprets transformation matrices provided by the
config-parser.
There are two relevant options in 'sh_pars':
'tmatrix' : a transformation matrix applied to all ions in the shell
'tmatrices': interpreted as a set of transformation matrices for each ion.
If both of the options are present a warning is issued and 'tmatrices'
supersedes 'tmatrix'.
"""
nion = len(self.ion_list)
nm = self.lm2 - self.lm1
if 'tmatrices' in sh_pars:
if 'tmatrix' in sh_pars:
mess = "Both TRANSFORM and TRANSFILE are specified, TRANSFORM will be ignored."
issue_warning(mess)
raw_matrices = sh_pars['tmatrices']
nrow, ncol = raw_matrices.shape
assert nrow%nion == 0, "Number of rows in TRANSFILE must be divisible by the number of ions"
assert ncol%nm == 0, "Number of columns in TRANSFILE must be divisible by the number of orbitals 2*l + 1"
nr = nrow / nion
nsize = ncol / nm
assert nsize in (1, 2, 4), "Number of columns in TRANSFILE must be divisible by either 1, 2, or 4"
#
# Determine the spin-dimension and whether the matrices are real or complex
#
# if nsize == 1 or nsize == 2:
# Matrices (either real or complex) are spin-independent
# nls_dim = nm
# if msize == 2:
# is_complex = True
# else:
# is_complex = False
# elif nsize = 4:
# Matrices are complex and spin-dependent
# nls_dim = 2 * nm
# is_complex = True
#
is_complex = nsize > 1
ns_dim = max(1, nsize / 2)
# Dimension of the orbital subspace
assert nr%ns_dim == 0, "Number of rows in TRANSFILE is not compatible with the spin dimension"
ndim = nr / ns_dim
self.tmatrices = np.zeros((nion, nr, nm * ns_dim), dtype=np.complex128)
if is_complex:
raw_matrices = raw_matrices[:, ::2] + raw_matrices[:, 1::2] * 1j
for io in xrange(nion):
i1 = io * nr
i2 = (io + 1) * nr
self.tmatrices[io, :, :] = raw_matrices[i1:i2, :]
return ndim
if 'tmatrix' in sh_pars:
raw_matrix = sh_pars['tmatrix']
nrow, ncol = raw_matrix.shape
assert ncol%nm == 0, "Number of columns in TRANSFORM must be divisible by the number of orbitals 2*l + 1"
# Only spin-independent matrices are expected here
nsize = ncol / nm
assert nsize in (1, 2), "Number of columns in TRANSFORM must be divisible by either 1 or 2"
is_complex = nsize > 1
if is_complex:
matrix = raw_matrix[:, ::2] + raw_matrix[:, 1::2] * 1j
else:
matrix = raw_matrix
ndim = nrow
self.tmatrices = np.zeros((nion, nrow, nm), dtype=np.complex128)
for io in xrange(nion):
self.tmatrices[io, :, :] = raw_matrix
return ndim
# If no transformation matrices are provided define a default one
ns_dim = 2 if self.nc_flag else 1
ndim = nm * ns_dim
self.tmatrices = np.zeros((nion, ndim, ndim), dtype=np.complex128)
for io in xrange(nion):
self.tmatrices[io, :, :] = np.identity(ndim, dtype=np.complex128)
return ndim
################################################################################
#
# select_projectors
#
################################################################################
def select_projectors(self, ib_win, ib_min, ib_max):
"""
Selects a subset of projectors corresponding to a given energy window.
"""
self.ib_win = ib_win
self.ib_min = ib_min
self.ib_max = ib_max
nb_max = ib_max - ib_min + 1
# Set the dimensions of the array
nion, ns, nk, nlm, nbtot = self.proj_arr.shape
# !!! Note that the order of the two last indices is different !!!
self.proj_win = np.zeros((nion, ns, nk, nlm, nb_max), dtype=np.complex128)
# Select projectors for a given energy window
ns_band = self.ib_win.shape[1]
for isp in xrange(ns):
for ik in xrange(nk):
# TODO: for non-collinear case something else should be done here
is_b = min(isp, ns_band)
ib1 = self.ib_win[ik, is_b, 0]
ib2 = self.ib_win[ik, is_b, 1] + 1
ib_win = ib2 - ib1
self.proj_win[:, isp, ik, :, :ib_win] = self.proj_arr[:, isp, ik, :, ib1:ib2]
################################################################################
#
# density_matrix
#
################################################################################
def density_matrix(self, el_struct, site_diag=True, spin_diag=True):
"""
Returns occupation matrix/matrices for the shell.
"""
nion, ns, nk, nlm, nbtot = self.proj_win.shape
assert site_diag, "site_diag = False is not implemented"
assert spin_diag, "spin_diag = False is not implemented"
occ_mats = np.zeros((ns, nion, nlm, nlm), dtype=np.float64)
overlaps = np.zeros((ns, nion, nlm, nlm), dtype=np.float64)
# self.proj_win = np.zeros((nion, ns, nk, nlm, nb_max), dtype=np.complex128)
kweights = el_struct.kmesh['kweights']
occnums = el_struct.ferw
ib1 = self.ib_min
ib2 = self.ib_max + 1
for isp in xrange(ns):
for ik, weight, occ in it.izip(it.count(), kweights, occnums[isp, :, :]):
for io in xrange(nion):
proj_k = self.proj_win[io, isp, ik, ...]
occ_mats[isp, io, :, :] += np.dot(proj_k * occ[ib1:ib2],
proj_k.conj().T).real * weight
overlaps[isp, io, :, :] += np.dot(proj_k,
proj_k.conj().T).real * weight
# if not symops is None:
# occ_mats = symmetrize_matrix_set(occ_mats, symops, ions, perm_map)
return occ_mats, overlaps
################################################################################
#
# density_of_states
#
################################################################################
def density_of_states(self, el_struct, emesh):
"""
Returns projected DOS for the shell.
"""
nion, ns, nk, nlm, nbtot = self.proj_win.shape
# There is a problem with data storage structure of projectors that will
# make life more complicated. The problem is that band-indices of projectors
# for different k-points do not match because we store 'nb_max' values starting
# from 0.
nb_max = self.ib_max - self.ib_min + 1
ns_band = self.ib_win.shape[1]
ne = len(emesh)
dos = np.zeros((ne, ns, nion, nlm))
w_k = np.zeros((nk, nb_max, ns, nion, nlm), dtype=np.complex128)
for isp in xrange(ns):
for ik in xrange(nk):
is_b = min(isp, ns_band)
ib1 = self.ib_win[ik, is_b, 0]
ib2 = self.ib_win[ik, is_b, 1] + 1
for ib_g in xrange(ib1, ib2):
for io in xrange(nion):
# Note the difference between 'ib' and 'ibn':
# 'ib' counts from 0 to 'nb_k - 1'
# 'ibn' counts from 'ib1 - ib_min' to 'ib2 - ib_min'
ib = ib_g - ib1
ibn = ib_g - self.ib_min
proj_k = self.proj_win[io, isp, ik, :, ib]
w_k[ik, ib, isp, io, :] = proj_k * proj_k.conj()
# eigv_ef = el_struct.eigvals[ik, ib, isp] - el_struct.efermi
itt = el_struct.kmesh['itet'].T
# k-indices are starting from 0 in Python
itt[1:, :] -= 1
for isp in xrange(ns):
for ib, eigk in enumerate(el_struct.eigvals[:, self.ib_min:self.ib_max+1, isp].T):
for ie, e in enumerate(emesh):
eigk_ef = eigk - el_struct.efermi
cti = c_atm_dos.dos_weights_3d(eigk_ef, e, itt)
for im in xrange(nlm):
for io in xrange(nion):
dos[ie, isp, io, im] += np.sum((cti * w_k[itt[1:, :], ib, isp, io, im].real).sum(0) * itt[0, :])
dos *= 2 * el_struct.kmesh['volt']
# for isp in xrange(ns):
# for ik, weight, occ in it.izip(it.count(), kweights, occnums[isp, :, :]):
# for io in xrange(nion):
# proj_k = self.proj_win[isp, io, ik, ...]
# occ_mats[isp, io, :, :] += np.dot(proj_k * occ[ib1:ib2],
# proj_k.conj().T).real * weight
# overlaps[isp, io, :, :] += np.dot(proj_k,
# proj_k.conj().T).real * weight
# if not symops is None:
# occ_mats = symmetrize_matrix_set(occ_mats, symops, ions, perm_map)
return dos

View File

@ -236,13 +236,13 @@ class TestParseFileTmatrix(arraytest.ArrayTestCase):
[ -3.80200000e-04, 0.00000000e+00, 6.04452000e-02, -1.00000000e-07, -9.98171400e-01],
[ -5.14500000e-04, -0.00000000e+00, -9.98171400e-01, 0.00000000e+00, -6.04450000e-02]])
res = self.cpars.parse_file_tmatrix('tmatrix_file.dat')
res = self.cpars.parse_file_tmatrix(_rpath + 'tmatrix_file.dat')
self.assertEqual(res, expected)
# Scenario 2
def test_wrong_file(self):
with self.assertRaises(ValueError):
self.cpars.parse_file_tmatrix('test1.cfg')
self.cpars.parse_file_tmatrix(_rpath + 'test1.cfg')
################################################################################
#