mirror of
https://gitlab.com/scemama/QCaml.git
synced 2024-11-15 18:43:40 +01:00
491 lines
16 KiB
OCaml
491 lines
16 KiB
OCaml
open Util
|
|
open Lacaml.D
|
|
open Bigarray
|
|
|
|
let cutoff = Constants.cutoff
|
|
let cutoff2 = cutoff *. cutoff
|
|
|
|
exception NullQuartet
|
|
exception Found
|
|
|
|
let at_least_one_valid arr =
|
|
try
|
|
Vec.iter (fun x -> if (abs_float x > cutoff) then raise Found) arr ; false
|
|
with Found -> true
|
|
|
|
(*TODO : REMOVE *)
|
|
let sum integral =
|
|
Array.fold_left (+.) 0. integral
|
|
|
|
(** Horizontal and Vertical Recurrence Relations (HVRR) *)
|
|
let hvrr_two_e_vector (angMom_a, angMom_b, angMom_c, angMom_d)
|
|
(totAngMom_a, totAngMom_b, totAngMom_c, totAngMom_d)
|
|
(maxm, zero_m_array)
|
|
(expo_b, expo_d)
|
|
(expo_inv_p, expo_inv_q)
|
|
(center_ab, center_cd, center_pq)
|
|
coef_prod map_1d map_2d
|
|
=
|
|
|
|
let nq = Mat.dim1 coef_prod in
|
|
let np = Mat.dim2 coef_prod in
|
|
|
|
let empty =
|
|
Array.make nq 0.
|
|
in
|
|
|
|
let totAngMom_a = Angular_momentum.to_int totAngMom_a
|
|
and totAngMom_b = Angular_momentum.to_int totAngMom_b
|
|
and totAngMom_c = Angular_momentum.to_int totAngMom_c
|
|
and totAngMom_d = Angular_momentum.to_int totAngMom_d
|
|
in
|
|
|
|
(** Vertical recurrence relations *)
|
|
let rec vrr0_v l m angMom_a = function
|
|
| 1 ->
|
|
let xyz =
|
|
match angMom_a with
|
|
| (1,_,_) -> 0
|
|
| (_,1,_) -> 1
|
|
| _ -> 2
|
|
in
|
|
let f = expo_b.{l} *. (Coordinate.coord center_ab xyz) in
|
|
Array.init nq (fun k -> coef_prod.{k+1,l} *. expo_inv_p.{l} *.
|
|
(center_pq.{xyz+1,k+1,l} *. zero_m_array.(m+1).{k+1,l}
|
|
-. f *. zero_m_array.(m).{k+1,l} ) )
|
|
| 0 -> Array.init nq (fun k -> zero_m_array.(m).{k+1,l} *. coef_prod.{k+1,l})
|
|
| totAngMom_a ->
|
|
let key = Zkey.of_int_tuple (Zkey.Three angMom_a)
|
|
in
|
|
|
|
try Zmap.find map_1d.(m).(l-1) key with
|
|
| Not_found ->
|
|
let result =
|
|
let am, amm, amxyz, xyz =
|
|
match angMom_a with
|
|
| (x,0,0) -> (x-1,0,0),(x-2,0,0), x-1, 0
|
|
| (x,y,0) -> (x,y-1,0),(x,y-2,0), y-1, 1
|
|
| (x,y,z) -> (x,y,z-1),(x,y,z-2), z-1, 2
|
|
in
|
|
if amxyz < 0 then empty else
|
|
let v1 =
|
|
let f =
|
|
-. expo_b.{l} *. expo_inv_p.{l} *. (Coordinate.coord center_ab xyz)
|
|
in
|
|
if (abs_float f < cutoff) then empty else
|
|
Array.map (fun v1k -> f *. v1k) (vrr0_v l m am (totAngMom_a-1) )
|
|
in
|
|
let p1 =
|
|
|
|
Array.mapi (fun k v2k -> v1.(k) +. expo_inv_p.{l} *. center_pq.{xyz+1,k+1,l} *. v2k) (vrr0_v l (m+1) am (totAngMom_a-1))
|
|
in
|
|
if amxyz < 1 then p1 else
|
|
let f = (float_of_int amxyz) *. expo_inv_p.{l} *. 0.5
|
|
in
|
|
if (abs_float f < cutoff) then empty else
|
|
let v1 = vrr0_v l m amm (totAngMom_a-2)
|
|
in
|
|
let v2 =
|
|
if (abs_float (f *. expo_inv_p.{l})) < cutoff then empty else
|
|
vrr0_v l (m+1) amm (totAngMom_a-2)
|
|
in
|
|
Array.init nq (fun k -> p1.(k) +.
|
|
f *. (v1.(k) +. v2.(k) *. expo_inv_p.{l} ) )
|
|
in Zmap.add map_1d.(m).(l-1) key result;
|
|
result
|
|
|
|
and vrr_v l m angMom_a angMom_c totAngMom_a totAngMom_c =
|
|
|
|
match (totAngMom_a, totAngMom_c) with
|
|
| (i,0) -> if (i>0) then
|
|
vrr0_v l m angMom_a totAngMom_a
|
|
else
|
|
Array.init nq (fun k -> zero_m_array.(m).{k+1,l} *. coef_prod.{k+1,l})
|
|
| (_,_) ->
|
|
|
|
let key = Zkey.of_int_tuple (Zkey.Six (angMom_a, angMom_c))
|
|
in
|
|
|
|
try Zmap.find map_2d.(m).(l-1) key with
|
|
| Not_found ->
|
|
let result =
|
|
begin
|
|
let am, cm, cmm, axyz, cxyz, xyz =
|
|
let (aax, aay, aaz) = angMom_a
|
|
and (acx, acy, acz) = angMom_c in
|
|
if (acz > 0) then
|
|
(aax, aay, aaz-1),
|
|
(acx, acy, acz-1),
|
|
(acx, acy, acz-2),
|
|
aaz, acz, 2
|
|
else if (acy > 0) then
|
|
(aax, aay-1,aaz),
|
|
(acx, acy-1,acz),
|
|
(acx, acy-2,acz),
|
|
aay,acy, 1
|
|
else
|
|
(aax-1,aay,aaz),
|
|
(acx-1,acy,acz),
|
|
(acx-2,acy,acz),
|
|
aax,acx, 0
|
|
in
|
|
(*
|
|
if cxyz < 1 then empty else
|
|
*)
|
|
let f1 =
|
|
let f = (Coordinate.coord center_cd xyz) in
|
|
Array.init nq (fun k ->
|
|
expo_d.{k+1} *. expo_inv_q.{k+1} *. f)
|
|
|> Vec.of_array
|
|
in
|
|
let f2 =
|
|
Array.init nq (fun k ->
|
|
expo_inv_q.{k+1} *. center_pq.{xyz+1,k+1,l} )
|
|
|> Vec.of_array
|
|
in
|
|
let v1 =
|
|
if (at_least_one_valid f1) then
|
|
vrr_v l m angMom_a cm totAngMom_a (totAngMom_c-1)
|
|
else empty
|
|
and v2 =
|
|
if (at_least_one_valid f2) then
|
|
vrr_v l (m+1) angMom_a cm totAngMom_a (totAngMom_c-1)
|
|
else empty
|
|
in
|
|
let p1 =
|
|
Array.init nq (fun k -> -. v1.(k) *. f1.{k+1} -. v2.(k) *. f2.{k+1})
|
|
in
|
|
let p2 =
|
|
if cxyz < 2 then p1 else
|
|
let fcm =
|
|
(float_of_int (cxyz-1)) *. 0.5
|
|
in
|
|
let f1 =
|
|
Vec.map (fun e -> fcm *. e) expo_inv_q
|
|
in
|
|
let f2 =
|
|
Vec.mul f1 expo_inv_q
|
|
in
|
|
let v1 =
|
|
if (at_least_one_valid f1) then
|
|
vrr_v l m angMom_a cmm totAngMom_a (totAngMom_c-2)
|
|
else empty
|
|
in
|
|
let v2 =
|
|
if (at_least_one_valid f2) then
|
|
vrr_v l (m+1) angMom_a cmm totAngMom_a (totAngMom_c-2)
|
|
else empty
|
|
in
|
|
Array.init nq (fun k -> p1.(k) +. f1.{k+1} *. v1.(k) +. f2.{k+1} *. v2.(k))
|
|
in
|
|
if (axyz < 1) || (cxyz < 1) then p2 else
|
|
let fa =
|
|
(float_of_int axyz) *. expo_inv_p.{l} *. 0.5
|
|
in
|
|
let f1 =
|
|
Vec.map (fun e -> fa *. e ) expo_inv_q
|
|
in
|
|
if (at_least_one_valid f1) then
|
|
let v =
|
|
vrr_v l (m+1) am cm (totAngMom_a-1) (totAngMom_c-1)
|
|
in
|
|
Array.init nq (fun k -> p2.(k) -. f1.{k+1} *. v.(k))
|
|
else p2
|
|
end
|
|
in Zmap.add map_2d.(m).(l-1) key result;
|
|
result
|
|
|
|
|
|
|
|
|
|
(** Horizontal recurrence relations *)
|
|
and hrr0_v l angMom_a angMom_b angMom_c
|
|
totAngMom_a totAngMom_b totAngMom_c =
|
|
|
|
match totAngMom_b with
|
|
| 0 ->
|
|
begin
|
|
match (totAngMom_a, totAngMom_c) with
|
|
| (0,0) ->
|
|
Array.init nq (fun k -> zero_m_array.(0).{k+1,l} *. coef_prod.{k+1,l})
|
|
|> sum
|
|
| (_,0) -> vrr0_v l 0 angMom_a totAngMom_a |> sum
|
|
| (_,_) -> vrr_v l 0 angMom_a angMom_c totAngMom_a totAngMom_c |> sum
|
|
end
|
|
| 1 ->
|
|
let (aax, aay, aaz) = angMom_a in
|
|
let ap, xyz =
|
|
match angMom_b with
|
|
| (_,_,1) -> (aax,aay,aaz+1), 2
|
|
| (_,1,_) -> (aax,aay+1,aaz), 1
|
|
| (_,_,_) -> (aax+1,aay,aaz), 0
|
|
in
|
|
let f = Coordinate.coord center_ab xyz in
|
|
let v1 =
|
|
vrr_v l 0 ap angMom_c (totAngMom_a+1) totAngMom_c
|
|
in
|
|
if (abs_float f < cutoff) then sum v1 else
|
|
let v2 =
|
|
vrr_v l 0 angMom_a angMom_c totAngMom_a totAngMom_c
|
|
in
|
|
Array.map2 (fun v1 v2 -> v1 +. v2 *. f) v1 v2 |> sum
|
|
| _ ->
|
|
let (aax, aay, aaz) = angMom_a
|
|
and (abx, aby, abz) = angMom_b in
|
|
let bxyz, xyz =
|
|
match angMom_b with
|
|
| (0,0,_) -> abz, 2
|
|
| (0,_,_) -> aby, 1
|
|
| _ -> abx, 0
|
|
in
|
|
if (bxyz < 1) then 0. else
|
|
let ap, bm =
|
|
match xyz with
|
|
| 0 -> (aax+1,aay,aaz),(abx-1,aby,abz)
|
|
| 1 -> (aax,aay+1,aaz),(abx,aby-1,abz)
|
|
| _ -> (aax,aay,aaz+1),(abx,aby,abz-1)
|
|
in
|
|
|
|
let h1 =
|
|
hrr0_v l ap bm angMom_c (totAngMom_a+1) (totAngMom_b-1) totAngMom_c
|
|
in
|
|
let f = (Coordinate.coord center_ab xyz) in
|
|
if (abs_float f < cutoff) then h1 else
|
|
let h2 =
|
|
hrr0_v l angMom_a bm angMom_c totAngMom_a (totAngMom_b-1) totAngMom_c
|
|
in
|
|
h1 +. h2 *. f
|
|
|
|
and hrr_v l angMom_a angMom_b angMom_c angMom_d
|
|
totAngMom_a totAngMom_b totAngMom_c totAngMom_d =
|
|
|
|
match (totAngMom_b, totAngMom_d) with
|
|
| (_,0) -> if (totAngMom_b = 0) then
|
|
vrr_v l 0 angMom_a angMom_c totAngMom_a totAngMom_c
|
|
|> sum
|
|
else
|
|
hrr0_v l angMom_a angMom_b angMom_c totAngMom_a totAngMom_b totAngMom_c
|
|
| (_,_) ->
|
|
let (acx, acy, acz) = angMom_c
|
|
and (adx, ady, adz) = angMom_d in
|
|
let cp, dm, xyz =
|
|
match angMom_d with
|
|
| (_,0,0) -> (acx+1, acy, acz), (adx-1, ady, adz), 0
|
|
| (_,_,0) -> (acx, acy+1, acz), (adx, ady-1, adz), 1
|
|
| _ -> (acx, acy, acz+1), (adx, ady, adz-1), 2
|
|
in
|
|
let h1 =
|
|
hrr_v l angMom_a angMom_b cp dm totAngMom_a totAngMom_b (totAngMom_c+1) (totAngMom_d-1)
|
|
and h2 =
|
|
hrr_v l angMom_a angMom_b angMom_c dm totAngMom_a totAngMom_b totAngMom_c (totAngMom_d-1)
|
|
in
|
|
let f = (Coordinate.coord center_cd xyz) in
|
|
h1 +. f *. h2
|
|
in
|
|
Array.init np (fun ab ->
|
|
hrr_v (ab+1)
|
|
(angMom_a.(0),angMom_a.(1),angMom_a.(2))
|
|
(angMom_b.(0),angMom_b.(1),angMom_b.(2))
|
|
(angMom_c.(0),angMom_c.(1),angMom_c.(2))
|
|
(angMom_d.(0),angMom_d.(1),angMom_d.(2))
|
|
totAngMom_a totAngMom_b totAngMom_c totAngMom_d
|
|
) |> sum
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
let contracted_class_shell_pairs ~zero_m ?schwartz_p ?schwartz_q shell_p shell_q : float Zmap.t =
|
|
|
|
let shell_a = shell_p.ContractedShellPair.shell_a
|
|
and shell_b = shell_p.ContractedShellPair.shell_b
|
|
and shell_c = shell_q.ContractedShellPair.shell_a
|
|
and shell_d = shell_q.ContractedShellPair.shell_b
|
|
and sp = shell_p.ContractedShellPair.shell_pairs
|
|
and sq = shell_q.ContractedShellPair.shell_pairs
|
|
in
|
|
let maxm =
|
|
let open Angular_momentum in
|
|
(to_int @@ Contracted_shell.totAngMom shell_a) + (to_int @@ Contracted_shell.totAngMom shell_b)
|
|
+ (to_int @@ Contracted_shell.totAngMom shell_c) + (to_int @@ Contracted_shell.totAngMom shell_d)
|
|
in
|
|
|
|
(* Pre-computation of integral class indices *)
|
|
let class_indices =
|
|
Angular_momentum.zkey_array
|
|
(Angular_momentum.Quartet
|
|
Contracted_shell.(totAngMom shell_a, totAngMom shell_b,
|
|
totAngMom shell_c, totAngMom shell_d))
|
|
in
|
|
|
|
let contracted_class =
|
|
Array.make (Array.length class_indices) 0.;
|
|
in
|
|
|
|
(* Compute all integrals in the shell for each pair of significant shell pairs *)
|
|
|
|
let expo_inv_p =
|
|
Array.map (fun shell_ab -> shell_ab.ShellPair.expo_inv) sp
|
|
|> Vec.of_array
|
|
and expo_inv_q =
|
|
Array.map (fun shell_cd -> shell_cd.ShellPair.expo_inv) sq
|
|
|> Vec.of_array
|
|
in
|
|
let np, nq =
|
|
Vec.dim expo_inv_p, Vec.dim expo_inv_q
|
|
in
|
|
let coef =
|
|
let result = Mat.make0 nq np in
|
|
Lacaml.D.ger
|
|
(Vec.of_array shell_q.ContractedShellPair.coef)
|
|
(Vec.of_array shell_p.ContractedShellPair.coef)
|
|
result;
|
|
result
|
|
in
|
|
|
|
begin
|
|
match Contracted_shell.(totAngMom shell_a, totAngMom shell_b,
|
|
totAngMom shell_c, totAngMom shell_d) with
|
|
| Angular_momentum.(S,S,S,S) ->
|
|
contracted_class.(0) <-
|
|
let zm_array = Mat.init_rows np nq (fun i j ->
|
|
(** Screening on the product of coefficients *)
|
|
try
|
|
if (abs_float coef.{j,i} ) < 1.e-3*.cutoff then
|
|
raise NullQuartet;
|
|
|
|
let expo_pq_inv =
|
|
expo_inv_p.{i} +. expo_inv_q.{j}
|
|
in
|
|
let center_pq =
|
|
Coordinate.(sp.(i-1).ShellPair.center |- sq.(j-1).ShellPair.center)
|
|
in
|
|
let norm_pq_sq =
|
|
Coordinate.dot center_pq center_pq
|
|
in
|
|
|
|
let zero_m_array =
|
|
zero_m ~maxm:0 ~expo_pq_inv ~norm_pq_sq
|
|
in
|
|
zero_m_array.(0)
|
|
with NullQuartet -> 0.
|
|
) in
|
|
Mat.gemm_trace zm_array coef
|
|
| _ ->
|
|
let expo_b =
|
|
Array.map (fun shell_ab -> Contracted_shell.expo shell_b shell_ab.ShellPair.j) sp
|
|
|> Vec.of_array
|
|
and expo_d =
|
|
Array.map (fun shell_cd -> Contracted_shell.expo shell_d shell_cd.ShellPair.j) sq
|
|
|> Vec.of_array
|
|
in
|
|
let norm_coef_scale_p = shell_p.ContractedShellPair.norm_coef_scale in
|
|
|
|
|
|
let center_pq =
|
|
let result =
|
|
Array3.create Float64 fortran_layout 3 nq np
|
|
in
|
|
Array.iteri (fun ab shell_ab ->
|
|
Array.iteri (fun cd shell_cd ->
|
|
let cpq =
|
|
Coordinate.(shell_ab.ShellPair.center |- shell_cd.ShellPair.center)
|
|
in
|
|
result.{1,cd+1,ab+1} <- Coordinate.x cpq;
|
|
result.{2,cd+1,ab+1} <- Coordinate.y cpq;
|
|
result.{3,cd+1,ab+1} <- Coordinate.z cpq;
|
|
) sq
|
|
) sp;
|
|
result
|
|
in
|
|
let zero_m_array =
|
|
let result =
|
|
Array.init (maxm+1) (fun _ -> Mat.make0 nq np)
|
|
in
|
|
Array.iteri (fun ab shell_ab ->
|
|
let zero_m_array_tmp =
|
|
Array.mapi (fun cd shell_cd ->
|
|
let expo_pq_inv =
|
|
expo_inv_p.{ab+1} +. expo_inv_q.{cd+1}
|
|
in
|
|
let norm_pq_sq =
|
|
center_pq.{1,cd+1,ab+1} *. center_pq.{1,cd+1,ab+1} +.
|
|
center_pq.{2,cd+1,ab+1} *. center_pq.{2,cd+1,ab+1} +.
|
|
center_pq.{3,cd+1,ab+1} *. center_pq.{3,cd+1,ab+1}
|
|
in
|
|
|
|
zero_m ~maxm ~expo_pq_inv ~norm_pq_sq
|
|
) sq
|
|
(*
|
|
|> Array.to_list
|
|
|> List.filter (fun (zero_m_array, d,
|
|
center_pq,coef_prod) -> abs_float coef_prod >= 1.e-4 *. cutoff)
|
|
|> Array.of_list
|
|
*)
|
|
in
|
|
(* Transpose result *)
|
|
for m=0 to maxm do
|
|
for cd=1 to nq do
|
|
result.(m).{cd,ab+1} <- zero_m_array_tmp.(cd-1).(m)
|
|
done
|
|
done
|
|
) sp;
|
|
result
|
|
in
|
|
|
|
let norm =
|
|
let norm_coef_scale_q = shell_q.ContractedShellPair.norm_coef_scale in
|
|
Array.map (fun v1 ->
|
|
Array.map (fun v2 -> v1 *. v2) norm_coef_scale_q
|
|
) norm_coef_scale_p
|
|
|> Array.to_list
|
|
|> Array.concat
|
|
in
|
|
|
|
let map_1d = Array.init maxm (fun _ -> Array.init np (fun _ -> Zmap.create (4*maxm)))
|
|
and map_2d = Array.init maxm (fun _ -> Array.init np (fun _ -> Zmap.create (Array.length class_indices)))
|
|
in
|
|
(* Compute the integral class from the primitive shell quartet *)
|
|
Array.iteri (fun i key ->
|
|
let a = Zkey.to_int_array Zkey.Kind_12 key in
|
|
let (angMomA,angMomB,angMomC,angMomD) =
|
|
( [| a.(0) ; a.(1) ; a.(2) |],
|
|
[| a.(3) ; a.(4) ; a.(5) |],
|
|
[| a.(6) ; a.(7) ; a.(8) |],
|
|
[| a.(9) ; a.(10) ; a.(11) |] )
|
|
in
|
|
let integral =
|
|
hvrr_two_e_vector (angMomA, angMomB, angMomC, angMomD)
|
|
(Contracted_shell.totAngMom shell_a, Contracted_shell.totAngMom shell_b,
|
|
Contracted_shell.totAngMom shell_c, Contracted_shell.totAngMom shell_d)
|
|
(maxm, zero_m_array)
|
|
(expo_b, expo_d)
|
|
(expo_inv_p, expo_inv_q)
|
|
(shell_p.ContractedShellPair.center_ab,
|
|
shell_q.ContractedShellPair.center_ab, center_pq)
|
|
coef map_1d map_2d
|
|
in
|
|
contracted_class.(i) <- contracted_class.(i) +. integral *. norm.(i)
|
|
) class_indices
|
|
|
|
end;
|
|
|
|
let result =
|
|
Zmap.create (Array.length contracted_class)
|
|
in
|
|
Array.iteri (fun i key -> Zmap.add result key contracted_class.(i)) class_indices;
|
|
result
|
|
|
|
|
|
|
|
(** Computes all the two-electron integrals of the contracted shell quartet *)
|
|
let contracted_class ~zero_m shell_a shell_b shell_c shell_d : float Zmap.t =
|
|
|
|
let shell_p = ContractedShellPair.create ~cutoff shell_a shell_b
|
|
and shell_q = ContractedShellPair.create ~cutoff shell_c shell_d
|
|
in
|
|
contracted_class_shell_pairs ~zero_m shell_p shell_q
|
|
|