10
1
mirror of https://gitlab.com/scemama/QCaml.git synced 2024-11-15 18:43:40 +01:00
QCaml/Basis/TwoElectronRRVectorized.ml

491 lines
16 KiB
OCaml

open Util
open Lacaml.D
open Bigarray
let cutoff = Constants.cutoff
let cutoff2 = cutoff *. cutoff
exception NullQuartet
exception Found
let at_least_one_valid arr =
try
Vec.iter (fun x -> if (abs_float x > cutoff) then raise Found) arr ; false
with Found -> true
(*TODO : REMOVE *)
let sum integral =
Array.fold_left (+.) 0. integral
(** Horizontal and Vertical Recurrence Relations (HVRR) *)
let hvrr_two_e_vector (angMom_a, angMom_b, angMom_c, angMom_d)
(totAngMom_a, totAngMom_b, totAngMom_c, totAngMom_d)
(maxm, zero_m_array)
(expo_b, expo_d)
(expo_inv_p, expo_inv_q)
(center_ab, center_cd, center_pq)
coef_prod map_1d map_2d
=
let nq = Mat.dim1 coef_prod in
let np = Mat.dim2 coef_prod in
let empty =
Array.make nq 0.
in
let totAngMom_a = Angular_momentum.to_int totAngMom_a
and totAngMom_b = Angular_momentum.to_int totAngMom_b
and totAngMom_c = Angular_momentum.to_int totAngMom_c
and totAngMom_d = Angular_momentum.to_int totAngMom_d
in
(** Vertical recurrence relations *)
let rec vrr0_v l m angMom_a = function
| 1 ->
let xyz =
match angMom_a with
| (1,_,_) -> 0
| (_,1,_) -> 1
| _ -> 2
in
let f = expo_b.{l} *. (Coordinate.coord center_ab xyz) in
Array.init nq (fun k -> coef_prod.{k+1,l} *. expo_inv_p.{l} *.
(center_pq.{xyz+1,k+1,l} *. zero_m_array.(m+1).{k+1,l}
-. f *. zero_m_array.(m).{k+1,l} ) )
| 0 -> Array.init nq (fun k -> zero_m_array.(m).{k+1,l} *. coef_prod.{k+1,l})
| totAngMom_a ->
let key = Zkey.of_int_tuple (Zkey.Three angMom_a)
in
try Zmap.find map_1d.(m).(l-1) key with
| Not_found ->
let result =
let am, amm, amxyz, xyz =
match angMom_a with
| (x,0,0) -> (x-1,0,0),(x-2,0,0), x-1, 0
| (x,y,0) -> (x,y-1,0),(x,y-2,0), y-1, 1
| (x,y,z) -> (x,y,z-1),(x,y,z-2), z-1, 2
in
if amxyz < 0 then empty else
let v1 =
let f =
-. expo_b.{l} *. expo_inv_p.{l} *. (Coordinate.coord center_ab xyz)
in
if (abs_float f < cutoff) then empty else
Array.map (fun v1k -> f *. v1k) (vrr0_v l m am (totAngMom_a-1) )
in
let p1 =
Array.mapi (fun k v2k -> v1.(k) +. expo_inv_p.{l} *. center_pq.{xyz+1,k+1,l} *. v2k) (vrr0_v l (m+1) am (totAngMom_a-1))
in
if amxyz < 1 then p1 else
let f = (float_of_int amxyz) *. expo_inv_p.{l} *. 0.5
in
if (abs_float f < cutoff) then empty else
let v1 = vrr0_v l m amm (totAngMom_a-2)
in
let v2 =
if (abs_float (f *. expo_inv_p.{l})) < cutoff then empty else
vrr0_v l (m+1) amm (totAngMom_a-2)
in
Array.init nq (fun k -> p1.(k) +.
f *. (v1.(k) +. v2.(k) *. expo_inv_p.{l} ) )
in Zmap.add map_1d.(m).(l-1) key result;
result
and vrr_v l m angMom_a angMom_c totAngMom_a totAngMom_c =
match (totAngMom_a, totAngMom_c) with
| (i,0) -> if (i>0) then
vrr0_v l m angMom_a totAngMom_a
else
Array.init nq (fun k -> zero_m_array.(m).{k+1,l} *. coef_prod.{k+1,l})
| (_,_) ->
let key = Zkey.of_int_tuple (Zkey.Six (angMom_a, angMom_c))
in
try Zmap.find map_2d.(m).(l-1) key with
| Not_found ->
let result =
begin
let am, cm, cmm, axyz, cxyz, xyz =
let (aax, aay, aaz) = angMom_a
and (acx, acy, acz) = angMom_c in
if (acz > 0) then
(aax, aay, aaz-1),
(acx, acy, acz-1),
(acx, acy, acz-2),
aaz, acz, 2
else if (acy > 0) then
(aax, aay-1,aaz),
(acx, acy-1,acz),
(acx, acy-2,acz),
aay,acy, 1
else
(aax-1,aay,aaz),
(acx-1,acy,acz),
(acx-2,acy,acz),
aax,acx, 0
in
(*
if cxyz < 1 then empty else
*)
let f1 =
let f = (Coordinate.coord center_cd xyz) in
Array.init nq (fun k ->
expo_d.{k+1} *. expo_inv_q.{k+1} *. f)
|> Vec.of_array
in
let f2 =
Array.init nq (fun k ->
expo_inv_q.{k+1} *. center_pq.{xyz+1,k+1,l} )
|> Vec.of_array
in
let v1 =
if (at_least_one_valid f1) then
vrr_v l m angMom_a cm totAngMom_a (totAngMom_c-1)
else empty
and v2 =
if (at_least_one_valid f2) then
vrr_v l (m+1) angMom_a cm totAngMom_a (totAngMom_c-1)
else empty
in
let p1 =
Array.init nq (fun k -> -. v1.(k) *. f1.{k+1} -. v2.(k) *. f2.{k+1})
in
let p2 =
if cxyz < 2 then p1 else
let fcm =
(float_of_int (cxyz-1)) *. 0.5
in
let f1 =
Vec.map (fun e -> fcm *. e) expo_inv_q
in
let f2 =
Vec.mul f1 expo_inv_q
in
let v1 =
if (at_least_one_valid f1) then
vrr_v l m angMom_a cmm totAngMom_a (totAngMom_c-2)
else empty
in
let v2 =
if (at_least_one_valid f2) then
vrr_v l (m+1) angMom_a cmm totAngMom_a (totAngMom_c-2)
else empty
in
Array.init nq (fun k -> p1.(k) +. f1.{k+1} *. v1.(k) +. f2.{k+1} *. v2.(k))
in
if (axyz < 1) || (cxyz < 1) then p2 else
let fa =
(float_of_int axyz) *. expo_inv_p.{l} *. 0.5
in
let f1 =
Vec.map (fun e -> fa *. e ) expo_inv_q
in
if (at_least_one_valid f1) then
let v =
vrr_v l (m+1) am cm (totAngMom_a-1) (totAngMom_c-1)
in
Array.init nq (fun k -> p2.(k) -. f1.{k+1} *. v.(k))
else p2
end
in Zmap.add map_2d.(m).(l-1) key result;
result
(** Horizontal recurrence relations *)
and hrr0_v l angMom_a angMom_b angMom_c
totAngMom_a totAngMom_b totAngMom_c =
match totAngMom_b with
| 0 ->
begin
match (totAngMom_a, totAngMom_c) with
| (0,0) ->
Array.init nq (fun k -> zero_m_array.(0).{k+1,l} *. coef_prod.{k+1,l})
|> sum
| (_,0) -> vrr0_v l 0 angMom_a totAngMom_a |> sum
| (_,_) -> vrr_v l 0 angMom_a angMom_c totAngMom_a totAngMom_c |> sum
end
| 1 ->
let (aax, aay, aaz) = angMom_a in
let ap, xyz =
match angMom_b with
| (_,_,1) -> (aax,aay,aaz+1), 2
| (_,1,_) -> (aax,aay+1,aaz), 1
| (_,_,_) -> (aax+1,aay,aaz), 0
in
let f = Coordinate.coord center_ab xyz in
let v1 =
vrr_v l 0 ap angMom_c (totAngMom_a+1) totAngMom_c
in
if (abs_float f < cutoff) then sum v1 else
let v2 =
vrr_v l 0 angMom_a angMom_c totAngMom_a totAngMom_c
in
Array.map2 (fun v1 v2 -> v1 +. v2 *. f) v1 v2 |> sum
| _ ->
let (aax, aay, aaz) = angMom_a
and (abx, aby, abz) = angMom_b in
let bxyz, xyz =
match angMom_b with
| (0,0,_) -> abz, 2
| (0,_,_) -> aby, 1
| _ -> abx, 0
in
if (bxyz < 1) then 0. else
let ap, bm =
match xyz with
| 0 -> (aax+1,aay,aaz),(abx-1,aby,abz)
| 1 -> (aax,aay+1,aaz),(abx,aby-1,abz)
| _ -> (aax,aay,aaz+1),(abx,aby,abz-1)
in
let h1 =
hrr0_v l ap bm angMom_c (totAngMom_a+1) (totAngMom_b-1) totAngMom_c
in
let f = (Coordinate.coord center_ab xyz) in
if (abs_float f < cutoff) then h1 else
let h2 =
hrr0_v l angMom_a bm angMom_c totAngMom_a (totAngMom_b-1) totAngMom_c
in
h1 +. h2 *. f
and hrr_v l angMom_a angMom_b angMom_c angMom_d
totAngMom_a totAngMom_b totAngMom_c totAngMom_d =
match (totAngMom_b, totAngMom_d) with
| (_,0) -> if (totAngMom_b = 0) then
vrr_v l 0 angMom_a angMom_c totAngMom_a totAngMom_c
|> sum
else
hrr0_v l angMom_a angMom_b angMom_c totAngMom_a totAngMom_b totAngMom_c
| (_,_) ->
let (acx, acy, acz) = angMom_c
and (adx, ady, adz) = angMom_d in
let cp, dm, xyz =
match angMom_d with
| (_,0,0) -> (acx+1, acy, acz), (adx-1, ady, adz), 0
| (_,_,0) -> (acx, acy+1, acz), (adx, ady-1, adz), 1
| _ -> (acx, acy, acz+1), (adx, ady, adz-1), 2
in
let h1 =
hrr_v l angMom_a angMom_b cp dm totAngMom_a totAngMom_b (totAngMom_c+1) (totAngMom_d-1)
and h2 =
hrr_v l angMom_a angMom_b angMom_c dm totAngMom_a totAngMom_b totAngMom_c (totAngMom_d-1)
in
let f = (Coordinate.coord center_cd xyz) in
h1 +. f *. h2
in
Array.init np (fun ab ->
hrr_v (ab+1)
(angMom_a.(0),angMom_a.(1),angMom_a.(2))
(angMom_b.(0),angMom_b.(1),angMom_b.(2))
(angMom_c.(0),angMom_c.(1),angMom_c.(2))
(angMom_d.(0),angMom_d.(1),angMom_d.(2))
totAngMom_a totAngMom_b totAngMom_c totAngMom_d
) |> sum
let contracted_class_shell_pairs ~zero_m ?schwartz_p ?schwartz_q shell_p shell_q : float Zmap.t =
let shell_a = shell_p.ContractedShellPair.shell_a
and shell_b = shell_p.ContractedShellPair.shell_b
and shell_c = shell_q.ContractedShellPair.shell_a
and shell_d = shell_q.ContractedShellPair.shell_b
and sp = shell_p.ContractedShellPair.shell_pairs
and sq = shell_q.ContractedShellPair.shell_pairs
in
let maxm =
let open Angular_momentum in
(to_int @@ Contracted_shell.totAngMom shell_a) + (to_int @@ Contracted_shell.totAngMom shell_b)
+ (to_int @@ Contracted_shell.totAngMom shell_c) + (to_int @@ Contracted_shell.totAngMom shell_d)
in
(* Pre-computation of integral class indices *)
let class_indices =
Angular_momentum.zkey_array
(Angular_momentum.Quartet
Contracted_shell.(totAngMom shell_a, totAngMom shell_b,
totAngMom shell_c, totAngMom shell_d))
in
let contracted_class =
Array.make (Array.length class_indices) 0.;
in
(* Compute all integrals in the shell for each pair of significant shell pairs *)
let expo_inv_p =
Array.map (fun shell_ab -> shell_ab.ShellPair.expo_inv) sp
|> Vec.of_array
and expo_inv_q =
Array.map (fun shell_cd -> shell_cd.ShellPair.expo_inv) sq
|> Vec.of_array
in
let np, nq =
Vec.dim expo_inv_p, Vec.dim expo_inv_q
in
let coef =
let result = Mat.make0 nq np in
Lacaml.D.ger
(Vec.of_array shell_q.ContractedShellPair.coef)
(Vec.of_array shell_p.ContractedShellPair.coef)
result;
result
in
begin
match Contracted_shell.(totAngMom shell_a, totAngMom shell_b,
totAngMom shell_c, totAngMom shell_d) with
| Angular_momentum.(S,S,S,S) ->
contracted_class.(0) <-
let zm_array = Mat.init_rows np nq (fun i j ->
(** Screening on the product of coefficients *)
try
if (abs_float coef.{j,i} ) < 1.e-3*.cutoff then
raise NullQuartet;
let expo_pq_inv =
expo_inv_p.{i} +. expo_inv_q.{j}
in
let center_pq =
Coordinate.(sp.(i-1).ShellPair.center |- sq.(j-1).ShellPair.center)
in
let norm_pq_sq =
Coordinate.dot center_pq center_pq
in
let zero_m_array =
zero_m ~maxm:0 ~expo_pq_inv ~norm_pq_sq
in
zero_m_array.(0)
with NullQuartet -> 0.
) in
Mat.gemm_trace zm_array coef
| _ ->
let expo_b =
Array.map (fun shell_ab -> Contracted_shell.expo shell_b shell_ab.ShellPair.j) sp
|> Vec.of_array
and expo_d =
Array.map (fun shell_cd -> Contracted_shell.expo shell_d shell_cd.ShellPair.j) sq
|> Vec.of_array
in
let norm_coef_scale_p = shell_p.ContractedShellPair.norm_coef_scale in
let center_pq =
let result =
Array3.create Float64 fortran_layout 3 nq np
in
Array.iteri (fun ab shell_ab ->
Array.iteri (fun cd shell_cd ->
let cpq =
Coordinate.(shell_ab.ShellPair.center |- shell_cd.ShellPair.center)
in
result.{1,cd+1,ab+1} <- Coordinate.x cpq;
result.{2,cd+1,ab+1} <- Coordinate.y cpq;
result.{3,cd+1,ab+1} <- Coordinate.z cpq;
) sq
) sp;
result
in
let zero_m_array =
let result =
Array.init (maxm+1) (fun _ -> Mat.make0 nq np)
in
Array.iteri (fun ab shell_ab ->
let zero_m_array_tmp =
Array.mapi (fun cd shell_cd ->
let expo_pq_inv =
expo_inv_p.{ab+1} +. expo_inv_q.{cd+1}
in
let norm_pq_sq =
center_pq.{1,cd+1,ab+1} *. center_pq.{1,cd+1,ab+1} +.
center_pq.{2,cd+1,ab+1} *. center_pq.{2,cd+1,ab+1} +.
center_pq.{3,cd+1,ab+1} *. center_pq.{3,cd+1,ab+1}
in
zero_m ~maxm ~expo_pq_inv ~norm_pq_sq
) sq
(*
|> Array.to_list
|> List.filter (fun (zero_m_array, d,
center_pq,coef_prod) -> abs_float coef_prod >= 1.e-4 *. cutoff)
|> Array.of_list
*)
in
(* Transpose result *)
for m=0 to maxm do
for cd=1 to nq do
result.(m).{cd,ab+1} <- zero_m_array_tmp.(cd-1).(m)
done
done
) sp;
result
in
let norm =
let norm_coef_scale_q = shell_q.ContractedShellPair.norm_coef_scale in
Array.map (fun v1 ->
Array.map (fun v2 -> v1 *. v2) norm_coef_scale_q
) norm_coef_scale_p
|> Array.to_list
|> Array.concat
in
let map_1d = Array.init maxm (fun _ -> Array.init np (fun _ -> Zmap.create (4*maxm)))
and map_2d = Array.init maxm (fun _ -> Array.init np (fun _ -> Zmap.create (Array.length class_indices)))
in
(* Compute the integral class from the primitive shell quartet *)
Array.iteri (fun i key ->
let a = Zkey.to_int_array Zkey.Kind_12 key in
let (angMomA,angMomB,angMomC,angMomD) =
( [| a.(0) ; a.(1) ; a.(2) |],
[| a.(3) ; a.(4) ; a.(5) |],
[| a.(6) ; a.(7) ; a.(8) |],
[| a.(9) ; a.(10) ; a.(11) |] )
in
let integral =
hvrr_two_e_vector (angMomA, angMomB, angMomC, angMomD)
(Contracted_shell.totAngMom shell_a, Contracted_shell.totAngMom shell_b,
Contracted_shell.totAngMom shell_c, Contracted_shell.totAngMom shell_d)
(maxm, zero_m_array)
(expo_b, expo_d)
(expo_inv_p, expo_inv_q)
(shell_p.ContractedShellPair.center_ab,
shell_q.ContractedShellPair.center_ab, center_pq)
coef map_1d map_2d
in
contracted_class.(i) <- contracted_class.(i) +. integral *. norm.(i)
) class_indices
end;
let result =
Zmap.create (Array.length contracted_class)
in
Array.iteri (fun i key -> Zmap.add result key contracted_class.(i)) class_indices;
result
(** Computes all the two-electron integrals of the contracted shell quartet *)
let contracted_class ~zero_m shell_a shell_b shell_c shell_d : float Zmap.t =
let shell_p = ContractedShellPair.create ~cutoff shell_a shell_b
and shell_q = ContractedShellPair.create ~cutoff shell_c shell_d
in
contracted_class_shell_pairs ~zero_m shell_p shell_q