open Util open Lacaml.D open Bigarray let cutoff = Constants.cutoff let cutoff2 = cutoff *. cutoff exception NullQuartet exception Found let at_least_one_valid arr = try Vec.iter (fun x -> if (abs_float x > cutoff) then raise Found) arr ; false with Found -> true (*TODO : REMOVE *) let sum integral = Array.fold_left (+.) 0. integral (** Horizontal and Vertical Recurrence Relations (HVRR) *) let hvrr_two_e_vector (angMom_a, angMom_b, angMom_c, angMom_d) (totAngMom_a, totAngMom_b, totAngMom_c, totAngMom_d) (maxm, zero_m_array) (expo_b, expo_d) (expo_inv_p, expo_inv_q) (center_ab, center_cd, center_pq) coef_prod map_1d map_2d = let nq = Mat.dim1 coef_prod in let np = Mat.dim2 coef_prod in let empty = Array.make nq 0. in let totAngMom_a = Angular_momentum.to_int totAngMom_a and totAngMom_b = Angular_momentum.to_int totAngMom_b and totAngMom_c = Angular_momentum.to_int totAngMom_c and totAngMom_d = Angular_momentum.to_int totAngMom_d in (** Vertical recurrence relations *) let rec vrr0_v l m angMom_a = function | 1 -> let xyz = match angMom_a with | (1,_,_) -> 0 | (_,1,_) -> 1 | _ -> 2 in let f = expo_b.{l} *. (Coordinate.coord center_ab xyz) in Array.init nq (fun k -> coef_prod.{k+1,l} *. expo_inv_p.{l} *. (center_pq.{xyz+1,k+1,l} *. zero_m_array.(m+1).{k+1,l} -. f *. zero_m_array.(m).{k+1,l} ) ) | 0 -> Array.init nq (fun k -> zero_m_array.(m).{k+1,l} *. coef_prod.{k+1,l}) | totAngMom_a -> let key = Zkey.of_int_tuple (Zkey.Three angMom_a) in try Zmap.find map_1d.(m).(l-1) key with | Not_found -> let result = let am, amm, amxyz, xyz = match angMom_a with | (x,0,0) -> (x-1,0,0),(x-2,0,0), x-1, 0 | (x,y,0) -> (x,y-1,0),(x,y-2,0), y-1, 1 | (x,y,z) -> (x,y,z-1),(x,y,z-2), z-1, 2 in if amxyz < 0 then empty else let v1 = let f = -. expo_b.{l} *. expo_inv_p.{l} *. (Coordinate.coord center_ab xyz) in if (abs_float f < cutoff) then empty else Array.map (fun v1k -> f *. v1k) (vrr0_v l m am (totAngMom_a-1) ) in let p1 = Array.mapi (fun k v2k -> v1.(k) +. expo_inv_p.{l} *. center_pq.{xyz+1,k+1,l} *. v2k) (vrr0_v l (m+1) am (totAngMom_a-1)) in if amxyz < 1 then p1 else let f = (float_of_int amxyz) *. expo_inv_p.{l} *. 0.5 in if (abs_float f < cutoff) then empty else let v1 = vrr0_v l m amm (totAngMom_a-2) in let v2 = if (abs_float (f *. expo_inv_p.{l})) < cutoff then empty else vrr0_v l (m+1) amm (totAngMom_a-2) in Array.init nq (fun k -> p1.(k) +. f *. (v1.(k) +. v2.(k) *. expo_inv_p.{l} ) ) in Zmap.add map_1d.(m).(l-1) key result; result and vrr_v l m angMom_a angMom_c totAngMom_a totAngMom_c = match (totAngMom_a, totAngMom_c) with | (i,0) -> if (i>0) then vrr0_v l m angMom_a totAngMom_a else Array.init nq (fun k -> zero_m_array.(m).{k+1,l} *. coef_prod.{k+1,l}) | (_,_) -> let key = Zkey.of_int_tuple (Zkey.Six (angMom_a, angMom_c)) in try Zmap.find map_2d.(m).(l-1) key with | Not_found -> let result = begin let am, cm, cmm, axyz, cxyz, xyz = let (aax, aay, aaz) = angMom_a and (acx, acy, acz) = angMom_c in if (acz > 0) then (aax, aay, aaz-1), (acx, acy, acz-1), (acx, acy, acz-2), aaz, acz, 2 else if (acy > 0) then (aax, aay-1,aaz), (acx, acy-1,acz), (acx, acy-2,acz), aay,acy, 1 else (aax-1,aay,aaz), (acx-1,acy,acz), (acx-2,acy,acz), aax,acx, 0 in (* if cxyz < 1 then empty else *) let f1 = let f = (Coordinate.coord center_cd xyz) in Array.init nq (fun k -> expo_d.{k+1} *. expo_inv_q.{k+1} *. f) |> Vec.of_array in let f2 = Array.init nq (fun k -> expo_inv_q.{k+1} *. center_pq.{xyz+1,k+1,l} ) |> Vec.of_array in let v1 = if (at_least_one_valid f1) then vrr_v l m angMom_a cm totAngMom_a (totAngMom_c-1) else empty and v2 = if (at_least_one_valid f2) then vrr_v l (m+1) angMom_a cm totAngMom_a (totAngMom_c-1) else empty in let p1 = Array.init nq (fun k -> -. v1.(k) *. f1.{k+1} -. v2.(k) *. f2.{k+1}) in let p2 = if cxyz < 2 then p1 else let fcm = (float_of_int (cxyz-1)) *. 0.5 in let f1 = Vec.map (fun e -> fcm *. e) expo_inv_q in let f2 = Vec.mul f1 expo_inv_q in let v1 = if (at_least_one_valid f1) then vrr_v l m angMom_a cmm totAngMom_a (totAngMom_c-2) else empty in let v2 = if (at_least_one_valid f2) then vrr_v l (m+1) angMom_a cmm totAngMom_a (totAngMom_c-2) else empty in Array.init nq (fun k -> p1.(k) +. f1.{k+1} *. v1.(k) +. f2.{k+1} *. v2.(k)) in if (axyz < 1) || (cxyz < 1) then p2 else let fa = (float_of_int axyz) *. expo_inv_p.{l} *. 0.5 in let f1 = Vec.map (fun e -> fa *. e ) expo_inv_q in if (at_least_one_valid f1) then let v = vrr_v l (m+1) am cm (totAngMom_a-1) (totAngMom_c-1) in Array.init nq (fun k -> p2.(k) -. f1.{k+1} *. v.(k)) else p2 end in Zmap.add map_2d.(m).(l-1) key result; result (** Horizontal recurrence relations *) and hrr0_v l angMom_a angMom_b angMom_c totAngMom_a totAngMom_b totAngMom_c = match totAngMom_b with | 0 -> begin match (totAngMom_a, totAngMom_c) with | (0,0) -> Array.init nq (fun k -> zero_m_array.(0).{k+1,l} *. coef_prod.{k+1,l}) |> sum | (_,0) -> vrr0_v l 0 angMom_a totAngMom_a |> sum | (_,_) -> vrr_v l 0 angMom_a angMom_c totAngMom_a totAngMom_c |> sum end | 1 -> let (aax, aay, aaz) = angMom_a in let ap, xyz = match angMom_b with | (_,_,1) -> (aax,aay,aaz+1), 2 | (_,1,_) -> (aax,aay+1,aaz), 1 | (_,_,_) -> (aax+1,aay,aaz), 0 in let f = Coordinate.coord center_ab xyz in let v1 = vrr_v l 0 ap angMom_c (totAngMom_a+1) totAngMom_c in if (abs_float f < cutoff) then sum v1 else let v2 = vrr_v l 0 angMom_a angMom_c totAngMom_a totAngMom_c in Array.map2 (fun v1 v2 -> v1 +. v2 *. f) v1 v2 |> sum | _ -> let (aax, aay, aaz) = angMom_a and (abx, aby, abz) = angMom_b in let bxyz, xyz = match angMom_b with | (0,0,_) -> abz, 2 | (0,_,_) -> aby, 1 | _ -> abx, 0 in if (bxyz < 1) then 0. else let ap, bm = match xyz with | 0 -> (aax+1,aay,aaz),(abx-1,aby,abz) | 1 -> (aax,aay+1,aaz),(abx,aby-1,abz) | _ -> (aax,aay,aaz+1),(abx,aby,abz-1) in let h1 = hrr0_v l ap bm angMom_c (totAngMom_a+1) (totAngMom_b-1) totAngMom_c in let f = (Coordinate.coord center_ab xyz) in if (abs_float f < cutoff) then h1 else let h2 = hrr0_v l angMom_a bm angMom_c totAngMom_a (totAngMom_b-1) totAngMom_c in h1 +. h2 *. f and hrr_v l angMom_a angMom_b angMom_c angMom_d totAngMom_a totAngMom_b totAngMom_c totAngMom_d = match (totAngMom_b, totAngMom_d) with | (_,0) -> if (totAngMom_b = 0) then vrr_v l 0 angMom_a angMom_c totAngMom_a totAngMom_c |> sum else hrr0_v l angMom_a angMom_b angMom_c totAngMom_a totAngMom_b totAngMom_c | (_,_) -> let (acx, acy, acz) = angMom_c and (adx, ady, adz) = angMom_d in let cp, dm, xyz = match angMom_d with | (_,0,0) -> (acx+1, acy, acz), (adx-1, ady, adz), 0 | (_,_,0) -> (acx, acy+1, acz), (adx, ady-1, adz), 1 | _ -> (acx, acy, acz+1), (adx, ady, adz-1), 2 in let h1 = hrr_v l angMom_a angMom_b cp dm totAngMom_a totAngMom_b (totAngMom_c+1) (totAngMom_d-1) and h2 = hrr_v l angMom_a angMom_b angMom_c dm totAngMom_a totAngMom_b totAngMom_c (totAngMom_d-1) in let f = (Coordinate.coord center_cd xyz) in h1 +. f *. h2 in Array.init np (fun ab -> hrr_v (ab+1) (angMom_a.(0),angMom_a.(1),angMom_a.(2)) (angMom_b.(0),angMom_b.(1),angMom_b.(2)) (angMom_c.(0),angMom_c.(1),angMom_c.(2)) (angMom_d.(0),angMom_d.(1),angMom_d.(2)) totAngMom_a totAngMom_b totAngMom_c totAngMom_d ) |> sum let contracted_class_shell_pairs ~zero_m ?schwartz_p ?schwartz_q shell_p shell_q : float Zmap.t = let shell_a = shell_p.ContractedShellPair.shell_a and shell_b = shell_p.ContractedShellPair.shell_b and shell_c = shell_q.ContractedShellPair.shell_a and shell_d = shell_q.ContractedShellPair.shell_b and sp = shell_p.ContractedShellPair.shell_pairs and sq = shell_q.ContractedShellPair.shell_pairs in let maxm = let open Angular_momentum in (to_int @@ Contracted_shell.totAngMom shell_a) + (to_int @@ Contracted_shell.totAngMom shell_b) + (to_int @@ Contracted_shell.totAngMom shell_c) + (to_int @@ Contracted_shell.totAngMom shell_d) in (* Pre-computation of integral class indices *) let class_indices = Angular_momentum.zkey_array (Angular_momentum.Quartet Contracted_shell.(totAngMom shell_a, totAngMom shell_b, totAngMom shell_c, totAngMom shell_d)) in let contracted_class = Array.make (Array.length class_indices) 0.; in (* Compute all integrals in the shell for each pair of significant shell pairs *) let expo_inv_p = Array.map (fun shell_ab -> shell_ab.ShellPair.expo_inv) sp |> Vec.of_array and expo_inv_q = Array.map (fun shell_cd -> shell_cd.ShellPair.expo_inv) sq |> Vec.of_array in let np, nq = Vec.dim expo_inv_p, Vec.dim expo_inv_q in let coef = let result = Mat.make0 nq np in Lacaml.D.ger (Vec.of_array shell_q.ContractedShellPair.coef) (Vec.of_array shell_p.ContractedShellPair.coef) result; result in begin match Contracted_shell.(totAngMom shell_a, totAngMom shell_b, totAngMom shell_c, totAngMom shell_d) with | Angular_momentum.(S,S,S,S) -> contracted_class.(0) <- let zm_array = Mat.init_rows np nq (fun i j -> (** Screening on the product of coefficients *) try if (abs_float coef.{j,i} ) < 1.e-3*.cutoff then raise NullQuartet; let expo_pq_inv = expo_inv_p.{i} +. expo_inv_q.{j} in let center_pq = Coordinate.(sp.(i-1).ShellPair.center |- sq.(j-1).ShellPair.center) in let norm_pq_sq = Coordinate.dot center_pq center_pq in let zero_m_array = zero_m ~maxm:0 ~expo_pq_inv ~norm_pq_sq in zero_m_array.(0) with NullQuartet -> 0. ) in Mat.gemm_trace zm_array coef | _ -> let expo_b = Array.map (fun shell_ab -> Contracted_shell.expo shell_b shell_ab.ShellPair.j) sp |> Vec.of_array and expo_d = Array.map (fun shell_cd -> Contracted_shell.expo shell_d shell_cd.ShellPair.j) sq |> Vec.of_array in let norm_coef_scale_p = shell_p.ContractedShellPair.norm_coef_scale in let center_pq = let result = Array3.create Float64 fortran_layout 3 nq np in Array.iteri (fun ab shell_ab -> Array.iteri (fun cd shell_cd -> let cpq = Coordinate.(shell_ab.ShellPair.center |- shell_cd.ShellPair.center) in result.{1,cd+1,ab+1} <- Coordinate.x cpq; result.{2,cd+1,ab+1} <- Coordinate.y cpq; result.{3,cd+1,ab+1} <- Coordinate.z cpq; ) sq ) sp; result in let zero_m_array = let result = Array.init (maxm+1) (fun _ -> Mat.make0 nq np) in Array.iteri (fun ab shell_ab -> let zero_m_array_tmp = Array.mapi (fun cd shell_cd -> let expo_pq_inv = expo_inv_p.{ab+1} +. expo_inv_q.{cd+1} in let norm_pq_sq = center_pq.{1,cd+1,ab+1} *. center_pq.{1,cd+1,ab+1} +. center_pq.{2,cd+1,ab+1} *. center_pq.{2,cd+1,ab+1} +. center_pq.{3,cd+1,ab+1} *. center_pq.{3,cd+1,ab+1} in zero_m ~maxm ~expo_pq_inv ~norm_pq_sq ) sq (* |> Array.to_list |> List.filter (fun (zero_m_array, d, center_pq,coef_prod) -> abs_float coef_prod >= 1.e-4 *. cutoff) |> Array.of_list *) in (* Transpose result *) for m=0 to maxm do for cd=1 to nq do result.(m).{cd,ab+1} <- zero_m_array_tmp.(cd-1).(m) done done ) sp; result in let norm = let norm_coef_scale_q = shell_q.ContractedShellPair.norm_coef_scale in Array.map (fun v1 -> Array.map (fun v2 -> v1 *. v2) norm_coef_scale_q ) norm_coef_scale_p |> Array.to_list |> Array.concat in let map_1d = Array.init maxm (fun _ -> Array.init np (fun _ -> Zmap.create (4*maxm))) and map_2d = Array.init maxm (fun _ -> Array.init np (fun _ -> Zmap.create (Array.length class_indices))) in (* Compute the integral class from the primitive shell quartet *) Array.iteri (fun i key -> let a = Zkey.to_int_array Zkey.Kind_12 key in let (angMomA,angMomB,angMomC,angMomD) = ( [| a.(0) ; a.(1) ; a.(2) |], [| a.(3) ; a.(4) ; a.(5) |], [| a.(6) ; a.(7) ; a.(8) |], [| a.(9) ; a.(10) ; a.(11) |] ) in let integral = hvrr_two_e_vector (angMomA, angMomB, angMomC, angMomD) (Contracted_shell.totAngMom shell_a, Contracted_shell.totAngMom shell_b, Contracted_shell.totAngMom shell_c, Contracted_shell.totAngMom shell_d) (maxm, zero_m_array) (expo_b, expo_d) (expo_inv_p, expo_inv_q) (shell_p.ContractedShellPair.center_ab, shell_q.ContractedShellPair.center_ab, center_pq) coef map_1d map_2d in contracted_class.(i) <- contracted_class.(i) +. integral *. norm.(i) ) class_indices end; let result = Zmap.create (Array.length contracted_class) in Array.iteri (fun i key -> Zmap.add result key contracted_class.(i)) class_indices; result (** Computes all the two-electron integrals of the contracted shell quartet *) let contracted_class ~zero_m shell_a shell_b shell_c shell_d : float Zmap.t = let shell_p = ContractedShellPair.create ~cutoff shell_a shell_b and shell_q = ContractedShellPair.create ~cutoff shell_c shell_d in contracted_class_shell_pairs ~zero_m shell_p shell_q