10
1
mirror of https://gitlab.com/scemama/QCaml.git synced 2025-01-03 01:55:40 +01:00

Recursive Boys function + removed zerom cache

This commit is contained in:
Anthony Scemama 2018-02-02 21:49:07 +01:00
parent 7ee34f3c9f
commit 08df6eddec
3 changed files with 74 additions and 112 deletions

View File

@ -325,9 +325,6 @@ let contracted_class_shell_pairs ~zero_m ?schwartz_p ?schwartz_q shell_p shell_q
(* Compute all integrals in the shell for each pair of significant shell pairs *)
let zero_m_cache =
Hashtbl.create 129
in
for ab=0 to (Array.length shell_p - 1) do
let cab = shell_p.(ab).Shell_pair.coef in
let b = shell_p.(ab).Shell_pair.j in
@ -352,18 +349,7 @@ let contracted_class_shell_pairs ~zero_m ?schwartz_p ?schwartz_q shell_p shell_q
in
let zero_m_array =
let key = (maxm, expo_pq_inv, norm_pq_sq) in
try
let result =
Hashtbl.find zero_m_cache key
in
result
with
| Not_found ->
let result =
zero_m ~maxm ~expo_pq_inv ~norm_pq_sq
in
(Hashtbl.add zero_m_cache key result ; result)
zero_m ~maxm ~expo_pq_inv ~norm_pq_sq
in
begin
match Contracted_shell.(totAngMom shell_a, totAngMom shell_b,

View File

@ -306,9 +306,6 @@ let contracted_class_shell_pairs ~zero_m ?schwartz_p ?schwartz_q shell_p shell_q
Array.make (Array.length class_indices) 0.;
in
let zero_m_cache =
Hashtbl.create 129
in
(* Compute all integrals in the shell for each pair of significant shell pairs *)
begin
@ -338,18 +335,7 @@ let contracted_class_shell_pairs ~zero_m ?schwartz_p ?schwartz_q shell_p shell_q
in
let zero_m_array =
let key = (0, expo_pq_inv, norm_pq_sq) in
try
let result =
Hashtbl.find zero_m_cache key
in
result
with
| Not_found ->
let result =
zero_m ~maxm:0 ~expo_pq_inv ~norm_pq_sq
in
(Hashtbl.add zero_m_cache key result ; result)
zero_m ~maxm:0 ~expo_pq_inv ~norm_pq_sq
in
accu +. coef_prod *. zero_m_array.(0)
@ -377,18 +363,7 @@ let contracted_class_shell_pairs ~zero_m ?schwartz_p ?schwartz_q shell_p shell_q
in
let zero_m_array =
let key = (maxm, expo_pq_inv, norm_pq_sq) in
try
let result =
Hashtbl.find zero_m_cache key
in
result
with
| Not_found ->
let result =
zero_m ~maxm ~expo_pq_inv ~norm_pq_sq
in
(Hashtbl.add zero_m_cache key result ; result)
zero_m ~maxm ~expo_pq_inv ~norm_pq_sq
in
let d = shell_cd.Shell_pair.j in

View File

@ -10,86 +10,53 @@ let factmax = 150
(*reference - Haruhiko Okumura: C-gengo niyoru saishin algorithm jiten
(* Incomplete gamma function : Int_0^x exp(-t) t^(a-1) dt
p: 1 / Gamma(a) * Int_0^x exp(-t) t^(a-1) dt
q: 1 / Gamma(a) * Int_x^inf exp(-t) t^(a-1) dt
reference - Haruhiko Okumura: C-gengo niyoru saishin algorithm jiten
(New Algorithm handbook in C language) (Gijyutsu hyouron
sha, Tokyo, 1991) p.227 [in Japanese] *)
(* Incomplete gamma function
p: 1 / Gamma(a) * Int_0^x exp(-t) t^(a-1) dt
q: 1 / Gamma(a) * Int_x^inf exp(-t) t^(a-1) dt *)
let rec p_gamma a x loggamma_a =
if x >= 1. +. a then 1. -. q_gamma a x loggamma_a
else if x = 0. then 0.
else
let rec pg_loop prev res term k =
if k > 1000. then failwith "p_gamma did not converge."
else if prev = res then res
else
let term = term *. x /. (a +. k) in
pg_loop res (res +. term) term (k +. 1.)
in
let r0 = exp (a *. log x -. x -. loggamma_a) /. a in
pg_loop min_float r0 r0 1.
and q_gamma a x loggamma_a =
if x < 1. +. a then 1. -. p_gamma a x loggamma_a
let incomplete_gamma ~alpha x =
let rec p_gamma a x loggamma_a =
if x >= 1. +. a then 1. -. q_gamma a x loggamma_a
else if x = 0. then 0.
else
let rec qg_loop prev res la lb w k =
if k > 1000. then failwith "q_gamma did not converge."
let rec pg_loop prev res term k =
if k > 1000. then failwith "p_gamma did not converge."
else if prev = res then res
else
let k_inv = 1. /. k in
let la, lb =
lb, ((k -. 1. -. a) *. (lb -. la) +. (k +. x) *. lb) *. k_inv
in
let w = w *. (k -. 1. -. a) *. k_inv in
let prev, res = res, res +. w /. (la *. lb) in
qg_loop prev res la lb w (k +. 1.)
let term = term *. x /. (a +. k) in
pg_loop res (res +. term) term (k +. 1.)
in
let w = exp (a *. log x -. x -. loggamma_a) in
let lb = (1. +. x -. a) in
qg_loop min_float (w /. lb) 1. lb w 2.0
let r0 = exp (a *. log x -. x -. loggamma_a) /. a in
pg_loop min_float r0 r0 1.
(** Generalized Boys function. Uses GSL's incomplete Gamma function.
maxm : Maximum total angular momentum
*)
let rec boys_function ~maxm t =
match maxm with
| 0 ->
begin
if t = 0. then [| 1. |] else
let sq_t = sqrt t in
[| (sq_pi_over_two /. sq_t) *. erf_float sq_t |]
end
| _ ->
begin
if t = 0. then
Array.init (maxm+1) (fun m -> 1. /. float_of_int (m+m+1))
and q_gamma a x loggamma_a =
if x < 1. +. a then 1. -. p_gamma a x loggamma_a
else
let incomplete_gamma ~alpha x =
let gf = gamma_float alpha in
gf *. p_gamma alpha x (log gf)
in
let t_inv =
1. /. t
in
let factor =
Array.make (maxm+1) (0.5, sqrt t_inv);
in
for i=1 to maxm
do
let (dm, f) = factor.(i-1) in
factor.(i) <- (dm +. 1., f *. t_inv);
done;
Array.map (fun (dm, f) ->
if dm = 0.5 then
(boys_function ~maxm:0 t).(0)
let rec qg_loop prev res la lb w k =
if k > 1000. then failwith "q_gamma did not converge."
else if prev = res then res
else
(incomplete_gamma dm t ) *. 0.5 *. f
) factor
end
let k_inv = 1. /. k in
let la, lb =
lb, ((k -. 1. -. a) *. (lb -. la) +. (k +. x) *. lb) *. k_inv
in
let w = w *. (k -. 1. -. a) *. k_inv in
let prev, res = res, res +. w /. (la *. lb) in
qg_loop prev res la lb w (k +. 1.)
in
let w = exp (a *. log x -. x -. loggamma_a) in
let lb = (1. +. x -. a) in
qg_loop min_float (w /. lb) 1. lb w 2.0
in
let gf = gamma_float alpha in
gf *. p_gamma alpha x (log gf)
@ -139,3 +106,37 @@ let chop f g =
(** Generalized Boys function.
maxm : Maximum total angular momentum
*)
let boys_function ~maxm t =
match maxm with
| 0 ->
begin
if t = 0. then [| 1. |] else
let sq_t = sqrt t in
[| (sq_pi_over_two /. sq_t) *. erf_float sq_t |]
end
| _ ->
begin
let result =
Array.init (maxm+1) (fun m -> 1. /. float_of_int (2*m+1))
in
if t <> 0. then
begin
let fmax =
let t_inv = sqrt (1. /. t) in
let n = float_of_int maxm in
let dm = 0.5 +. n in
let f = (pow t_inv (maxm+maxm+1) ) in
(incomplete_gamma dm t) *. 0.5 *. f
in
let emt = exp (-. t) in
result.(maxm) <- fmax;
for n=maxm-1 downto 0 do
result.(n) <- ( (t+.t) *. result.(n+1) +. emt) *. result.(n)
done
end;
result
end