10
1
mirror of https://gitlab.com/scemama/QCaml.git synced 2024-11-15 18:43:40 +01:00
QCaml/Basis/TwoElectronRRVectorized.ml

459 lines
16 KiB
OCaml

open Util
let cutoff = Constants.cutoff
let cutoff2 = cutoff *. cutoff
exception NullQuartet
exception Found
let at_least_one_valid arr =
try
Array.fold_left (fun _ x -> if (abs_float x > cutoff) then raise Found else false ) false arr
with Found -> true
(** Horizontal and Vertical Recurrence Relations (HVRR) *)
let hvrr_two_e_vector (angMom_a, angMom_b, angMom_c, angMom_d)
(totAngMom_a, totAngMom_b, totAngMom_c, totAngMom_d)
(maxm, zero_m_array)
(expo_b, expo_d)
(expo_inv_p, expo_inv_q)
(center_ab, center_cd, center_pq)
coef_prod map_1d map_2d
=
let ncoef = (Array.length coef_prod) in
let empty =
Array.make ncoef 0.
in
let totAngMom_a = Angular_momentum.to_int totAngMom_a
and totAngMom_b = Angular_momentum.to_int totAngMom_b
and totAngMom_c = Angular_momentum.to_int totAngMom_c
and totAngMom_d = Angular_momentum.to_int totAngMom_d
in
(** Vertical recurrence relations *)
let rec vrr0_v m angMom_a = function
| 1 ->
let xyz =
match angMom_a with
| (1,_,_) -> 0
| (_,1,_) -> 1
| _ -> 2
in
let f = expo_b *. (Coordinate.coord center_ab xyz) in
Array.mapi (fun k c -> c *. expo_inv_p *.
( (Coordinate.coord center_pq.(k) xyz) *. zero_m_array.(m+1).(k)
-. f *. zero_m_array.(m).(k) ) ) coef_prod
| 0 -> Array.mapi (fun k c -> c *. zero_m_array.(m).(k)) coef_prod
| totAngMom_a ->
let key = Zkey.of_int_tuple (Zkey.Three angMom_a)
in
try Zmap.find map_1d.(m) key with
| Not_found ->
let result =
let am, amm, amxyz, xyz =
match angMom_a with
| (x,0,0) -> (* 28_336 *) (x-1,0,0),(x-2,0,0), x-1, 0
| (x,y,0) -> (* 52_221 *) (x,y-1,0),(x,y-2,0), y-1, 1
| (x,y,z) -> (* 87_215 *) (x,y,z-1),(x,y,z-2), z-1, 2
in
if amxyz < 0 then empty else
let v1 =
let f =
-. expo_b *. expo_inv_p *. (Coordinate.coord center_ab xyz)
in
if (abs_float f < cutoff) then empty else
Array.mapi (fun k v1k -> f *. v1k) (vrr0_v m am (totAngMom_a-1) )
in
let p1 =
Array.mapi (fun k v2k -> v1.(k) +. expo_inv_p *. (Coordinate.coord center_pq.(k) xyz) *. v2k) (vrr0_v (m+1) am (totAngMom_a-1))
in
if amxyz < 1 then p1 else
let f = (float_of_int amxyz) *. expo_inv_p *. 0.5
in
if (abs_float f < cutoff) then empty else
let v1 = vrr0_v m amm (totAngMom_a-2)
in
let v2 =
if (abs_float (f *. expo_inv_p)) < cutoff then empty else
vrr0_v (m+1) amm (totAngMom_a-2)
in
Array.mapi (fun k _ -> p1.(k) +.
f *. (v1.(k) +. v2.(k) *. expo_inv_p ) ) coef_prod
in Zmap.add map_1d.(m) key result;
result
and vrr_v m angMom_a angMom_c totAngMom_a totAngMom_c =
match (totAngMom_a, totAngMom_c) with
| (i,0) -> if (i>0) then
vrr0_v m angMom_a totAngMom_a
else
Array.mapi (fun k c -> c *. zero_m_array.(m).(k)) coef_prod
| (_,_) ->
let key = Zkey.of_int_tuple (Zkey.Six (angMom_a, angMom_c))
in
try Zmap.find map_2d.(m) key with
| Not_found ->
let result =
begin
let am, cm, cmm, axyz, cxyz, xyz =
let angMom_ax, angMom_ay, angMom_az = angMom_a
and angMom_cx, angMom_cy, angMom_cz = angMom_c in
match angMom_c with
| (_,0,0) -> (* 321_984 *)
(angMom_ax-1, angMom_ay, angMom_az),
(angMom_cx-1, angMom_cy, angMom_cz),
(angMom_cx-2, angMom_cy, angMom_cz),
angMom_ax,angMom_cx, 0
| (_,_,0) -> (* 612_002 *)
(angMom_ax, angMom_ay-1, angMom_az),
(angMom_cx, angMom_cy-1, angMom_cz),
(angMom_cx, angMom_cy-2, angMom_cz),
angMom_ay,angMom_cy, 1
| _ -> (* 1_067_324 *)
(angMom_ax, angMom_ay, angMom_az-1),
(angMom_cx, angMom_cy, angMom_cz-1),
(angMom_cx, angMom_cy, angMom_cz-2),
angMom_az,angMom_cz, 2
in
if cxyz < 1 then empty else
let f1 =
Array.mapi (fun k _ ->
expo_d.(k) *. expo_inv_q.(k) *. (Coordinate.coord center_cd.(k) xyz) ) expo_inv_q
in
let f2 =
Array.mapi (fun k _ ->
expo_inv_q.(k) *. (Coordinate.coord center_pq.(k) xyz) ) expo_inv_q
in
let v1 =
if (at_least_one_valid f1) then
vrr_v m angMom_a cm totAngMom_a (totAngMom_c-1)
else empty
and v2 =
if (at_least_one_valid f2) then
vrr_v (m+1) angMom_a cm totAngMom_a (totAngMom_c-1)
else empty
in
let p1 =
Array.mapi (fun k _ -> -. v1.(k) *. f1.(k) -. v2.(k) *. f2.(k)) coef_prod
in
let p2 =
if cxyz < 2 then p1 else
let fcm =
(float_of_int (cxyz-1)) *. 0.5
in
let f1 =
Array.mapi (fun k _ -> fcm *. expo_inv_q.(k) ) coef_prod
in
let f2 =
Array.mapi (fun k _ -> f1.(k) *. expo_inv_q.(k) ) coef_prod
in
let v1 =
if (at_least_one_valid f1) then
vrr_v m angMom_a cmm totAngMom_a (totAngMom_c-2)
else empty
in
let v2 =
if (at_least_one_valid f2) then
vrr_v (m+1) angMom_a cmm totAngMom_a (totAngMom_c-2)
else empty
in
Array.mapi (fun k _ -> p1.(k) +. f1.(k) *. v1.(k) +. f2.(k) *. v2.(k)) coef_prod
in
if (axyz < 1) || (cxyz < 1) then p2 else
let fa =
(float_of_int axyz) *. expo_inv_p *. 0.5
in
let f1 =
Array.mapi (fun k _ -> fa *. expo_inv_q.(k) ) coef_prod
in
if (at_least_one_valid f1) then
let v =
vrr_v (m+1) am cm (totAngMom_a-1) (totAngMom_c-1)
in
Array.mapi (fun k _ -> p2.(k) -. f1.(k) *. v.(k)) coef_prod
else p2
end
in Zmap.add map_2d.(m) key result;
result
(** Horizontal recurrence relations *)
and hrr0_v angMom_a angMom_b angMom_c
totAngMom_a totAngMom_b totAngMom_c =
match totAngMom_b with
| 0 ->
begin
match (totAngMom_a, totAngMom_c) with
| (0,0) -> Array.mapi (fun k c -> c *. zero_m_array.(0).(k)) coef_prod
| (_,0) -> vrr0_v 0 angMom_a totAngMom_a
| (_,_) -> vrr_v 0 angMom_a angMom_c totAngMom_a totAngMom_c
end
| 1 ->
let angMom_ax, angMom_ay, angMom_az = angMom_a in
(* 5_045_008 *)
let ap, xyz =
match angMom_b with
| (1,_,_) -> (angMom_ax+1,angMom_ay,angMom_az), 0
| (_,1,_) -> (angMom_ax,angMom_ay+1,angMom_az), 1
| (_,_,_) -> (angMom_ax,angMom_ay,angMom_az+1), 2
in
let f = Coordinate.coord center_ab xyz in
let v1 =
vrr_v 0 ap angMom_c (totAngMom_a+1) totAngMom_c
in
if (abs_float f < cutoff) then v1 else
let v2 =
vrr_v 0 angMom_a angMom_c totAngMom_a totAngMom_c
in
Array.map2 (fun v1 v2 -> v1 +. v2 *. f) v1 v2
| _ ->
let angMom_ax, angMom_ay, angMom_az = angMom_a
and angMom_bx, angMom_by, angMom_bz = angMom_b in
(* 3_403_478 *)
let bxyz, xyz =
match angMom_b with
| (1,_,_) -> angMom_bx, 0
| (_,1,_) -> angMom_by, 1
| (_,_,_) -> angMom_bz, 2
in
if (bxyz < 1) then empty else
let ap, bm =
match xyz with
| 0 -> (angMom_ax+1,angMom_ay,angMom_az),(angMom_bx-1,angMom_by,angMom_bz)
| 1 -> (angMom_ax,angMom_ay+1,angMom_az),(angMom_bx,angMom_by-1,angMom_bz)
| _ -> (angMom_ax,angMom_ay,angMom_az+1),(angMom_bx,angMom_by,angMom_bz-1)
in
let h1 =
hrr0_v ap bm angMom_c (totAngMom_a+1) (totAngMom_b-1) totAngMom_c
in
let f = (Coordinate.coord center_ab xyz) in
if (abs_float f < cutoff) then h1 else
let h2 =
hrr0_v angMom_a bm angMom_c totAngMom_a (totAngMom_b-1) totAngMom_c
in Array.map2 (fun h1 h2 -> h1 +. h2 *. f) h1 h2
and hrr_v angMom_a angMom_b angMom_c angMom_d
totAngMom_a totAngMom_b totAngMom_c totAngMom_d =
match (totAngMom_b, totAngMom_d) with
| (_,0) -> if (totAngMom_b = 0) then
vrr_v 0 angMom_a angMom_c totAngMom_a totAngMom_c
else
hrr0_v angMom_a angMom_b angMom_c totAngMom_a totAngMom_b totAngMom_c
| (_,_) ->
let (angMom_cx, angMom_cy, angMom_cz) = angMom_c
and (angMom_dx, angMom_dy, angMom_dz) = angMom_d in
let cp, dm, xyz =
match angMom_d with
| (_,0,0) -> (* 1_524_451 *) (angMom_cx+1, angMom_cy, angMom_cz), (angMom_dx-1, angMom_dy, angMom_dz), 0
| (_,_,0) -> (* 1_302_937 *) (angMom_cx, angMom_cy+1, angMom_cz), (angMom_dx, angMom_dy-1, angMom_dz), 1
| _ -> (* 1_302_937 *) (angMom_cx, angMom_cy, angMom_cz+1), (angMom_dx, angMom_dy, angMom_dz-1), 2
in
let h1 =
hrr_v angMom_a angMom_b cp dm totAngMom_a totAngMom_b (totAngMom_c+1) (totAngMom_d-1)
and h2 =
hrr_v angMom_a angMom_b angMom_c dm totAngMom_a totAngMom_b totAngMom_c (totAngMom_d-1)
in
Array.mapi (fun k center_cd -> h1.(k) +. h2.(k) *. (Coordinate.coord center_cd xyz)) center_cd
in
hrr_v
(angMom_a.(0),angMom_a.(1),angMom_a.(2))
(angMom_b.(0),angMom_b.(1),angMom_b.(2))
(angMom_c.(0),angMom_c.(1),angMom_c.(2))
(angMom_d.(0),angMom_d.(1),angMom_d.(2))
totAngMom_a totAngMom_b totAngMom_c totAngMom_d
let contracted_class_shell_pairs ~zero_m ?schwartz_p ?schwartz_q shell_p shell_q : float Zmap.t =
let shell_a = shell_p.(0).Shell_pair.shell_a
and shell_b = shell_p.(0).Shell_pair.shell_b
and shell_c = shell_q.(0).Shell_pair.shell_a
and shell_d = shell_q.(0).Shell_pair.shell_b
in
let maxm =
let open Angular_momentum in
(to_int @@ Contracted_shell.totAngMom shell_a) + (to_int @@ Contracted_shell.totAngMom shell_b)
+ (to_int @@ Contracted_shell.totAngMom shell_c) + (to_int @@ Contracted_shell.totAngMom shell_d)
in
(* Pre-computation of integral class indices *)
let class_indices =
Angular_momentum.zkey_array
(Angular_momentum.Quartet
Contracted_shell.(totAngMom shell_a, totAngMom shell_b,
totAngMom shell_c, totAngMom shell_d))
in
let contracted_class =
Array.make (Array.length class_indices) 0.;
in
(* Compute all integrals in the shell for each pair of significant shell pairs *)
begin
match Contracted_shell.(totAngMom shell_a, totAngMom shell_b,
totAngMom shell_c, totAngMom shell_d) with
| Angular_momentum.(S,S,S,S) ->
contracted_class.(0) <-
Array.fold_left
(fun accu shell_ab -> accu +.
Array.fold_left (fun accu shell_cd ->
let coef_prod =
shell_ab.Shell_pair.coef *. shell_cd.Shell_pair.coef
in
(** Screening on the product of coefficients *)
try
if (abs_float coef_prod) < 1.e-3*.cutoff then
raise NullQuartet;
let expo_pq_inv =
shell_ab.Shell_pair.expo_inv +. shell_cd.Shell_pair.expo_inv
in
let center_pq =
Coordinate.(shell_ab.Shell_pair.center |- shell_cd.Shell_pair.center)
in
let norm_pq_sq =
Coordinate.dot center_pq center_pq
in
let zero_m_array =
zero_m ~maxm:0 ~expo_pq_inv ~norm_pq_sq
in
accu +. coef_prod *. zero_m_array.(0)
with NullQuartet -> accu
) 0. shell_q
) 0. shell_p
| _ ->
Array.iter (fun shell_ab ->
let norm_coef_scale_p = shell_ab.Shell_pair.norm_coef_scale in
let b = shell_ab.Shell_pair.j in
let common =
Array.map (fun shell_cd ->
let coef_prod =
shell_ab.Shell_pair.coef *. shell_cd.Shell_pair.coef
in
let expo_pq_inv =
shell_ab.Shell_pair.expo_inv +. shell_cd.Shell_pair.expo_inv
in
let center_pq =
Coordinate.(shell_ab.Shell_pair.center |- shell_cd.Shell_pair.center)
in
let norm_pq_sq =
Coordinate.dot center_pq center_pq
in
let zero_m_array =
zero_m ~maxm ~expo_pq_inv ~norm_pq_sq
in
let d = shell_cd.Shell_pair.j in
(zero_m_array, shell_cd.Shell_pair.expo_inv,
Contracted_shell.expo shell_d d, shell_cd.Shell_pair.center_ab,
center_pq,coef_prod)
) shell_q
|> Array.to_list
|> List.filter (fun (zero_m_array, expo_inv, d, center_cd,
center_pq,coef_prod) -> abs_float coef_prod >= 1.e-4 *. cutoff)
|> Array.of_list
in
let zero_m_array = Array.map (fun (zero_m_array, expo_inv, d, center_cd,
center_pq,coef_prod) -> zero_m_array) common
and expo_inv = Array.map (fun (zero_m_array, expo_inv, d, center_cd,
center_pq,coef_prod) -> expo_inv ) common
and d = Array.map (fun (zero_m_array, expo_inv, d, center_cd,
center_pq,coef_prod) -> d) common
and center_cd = Array.map (fun (zero_m_array, expo_inv, d, center_cd,
center_pq,coef_prod) -> center_cd) common
and center_pq = Array.map (fun (zero_m_array, expo_inv, d, center_cd,
center_pq,coef_prod) -> center_pq) common
and coef_prod = Array.map (fun (zero_m_array, expo_inv, d, center_cd,
center_pq,coef_prod) -> coef_prod) common
in
(* Transpose zero_m_array
*)
let zero_m_array =
let result = Array.init (maxm+1) (fun _ ->
Array.make (Array.length coef_prod) 0.)
in
for m=0 to maxm do
for k=0 to (Array.length coef_prod-1) do
result.(m).(k) <- zero_m_array.(k).(m)
done;
done;
result
in
(* Compute the integral class from the primitive shell quartet *)
let map_1d = Array.init maxm (fun _ -> Zmap.create (4*maxm)) in
let map_2d = Array.init maxm (fun _ -> Zmap.create (Array.length class_indices)) in
let norm =
let norm_coef_scale_q = shell_q.(0).Shell_pair.norm_coef_scale in
Array.map (fun v1 ->
Array.map (fun v2 -> v1 *. v2) norm_coef_scale_q
) norm_coef_scale_p
|> Array.to_list
|> Array.concat
in
Array.iteri (fun i key ->
let a = Zkey.to_int_array Zkey.Kind_12 key in
let (angMomA,angMomB,angMomC,angMomD) =
( [| a.(0) ; a.(1) ; a.(2) |],
[| a.(3) ; a.(4) ; a.(5) |],
[| a.(6) ; a.(7) ; a.(8) |],
[| a.(9) ; a.(10) ; a.(11) |] )
in
let integral =
hvrr_two_e_vector (angMomA, angMomB, angMomC, angMomD)
(Contracted_shell.totAngMom shell_a, Contracted_shell.totAngMom shell_b,
Contracted_shell.totAngMom shell_c, Contracted_shell.totAngMom shell_d)
(maxm, zero_m_array)
(Contracted_shell.expo shell_b b, d)
(shell_ab.Shell_pair.expo_inv, expo_inv)
(shell_ab.Shell_pair.center_ab, center_cd, center_pq)
coef_prod map_1d map_2d
in
let x = Array.fold_left (+.) 0. integral in
contracted_class.(i) <- contracted_class.(i) +. x *. norm.(i)
) class_indices
) shell_p
end;
let result =
Zmap.create (Array.length contracted_class)
in
Array.iteri (fun i key -> Zmap.add result key contracted_class.(i)) class_indices;
result
(** Computes all the two-electron integrals of the contracted shell quartet *)
let contracted_class ~zero_m shell_a shell_b shell_c shell_d : float Zmap.t =
let shell_p = Shell_pair.create_array ~cutoff shell_a shell_b
and shell_q = Shell_pair.create_array ~cutoff shell_c shell_d
in
contracted_class_shell_pairs ~zero_m shell_p shell_q