mirror of
https://gitlab.com/scemama/QCaml.git
synced 2024-12-06 20:43:33 +01:00
Introduced PrimitiveShellPair
This commit is contained in:
parent
cc3ae9b8a3
commit
03c5d1d64a
@ -7,7 +7,7 @@ type t =
|
||||
{
|
||||
shell_a : ContractedShell.t;
|
||||
shell_b : ContractedShell.t;
|
||||
shell_pairs : ShellPair.t array;
|
||||
shell_pairs : PrimitiveShellPair.t array;
|
||||
coef : float array;
|
||||
expo_inv : float array;
|
||||
center_ab : Coordinate.t; (* A-B *)
|
||||
@ -22,7 +22,6 @@ module Co = Coordinate
|
||||
module Cs = ContractedShell
|
||||
module Ps = PrimitiveShell
|
||||
module Psp = PrimitiveShellPair
|
||||
module Sp = ShellPair
|
||||
|
||||
(** Creates an contracted shell pair : an array of pairs of primitive shells.
|
||||
A contracted shell with N functions combined with a contracted
|
||||
@ -37,115 +36,36 @@ Format.printf "@[<2>shell_b :@ %a@]@;" Cs.pp s_b;
|
||||
|
||||
let make = Psp.create_make_of (Cs.prim s_a).(0) (Cs.prim s_b).(0) in
|
||||
|
||||
let center_ab = Co.( Cs.center s_a |- Cs.center s_b ) in
|
||||
|
||||
(*
|
||||
Format.printf "@[center_ab :@ %a@]@;" Coordinate.pp_angstrom center_ab;
|
||||
Format.printf "@[a_minus_b :@ %a@]@." Coordinate.pp_angstrom (Psp.a_minus_b (
|
||||
match make 0 (Cs.prim s_a).(0) 0 (Cs.prim s_b).(0) 0.
|
||||
with Some x -> x | _ -> assert false));
|
||||
*)
|
||||
|
||||
let norm_sq = Co.dot center_ab center_ab in
|
||||
|
||||
let norm_coef_scale_a =
|
||||
Cs.norm_coef_scale s_a
|
||||
and norm_coef_scale_b =
|
||||
Cs.norm_coef_scale s_b
|
||||
in
|
||||
let norm_coef_scale =
|
||||
Array.map (fun v1 ->
|
||||
Array.map (fun v2 -> v1 *. v2) norm_coef_scale_b
|
||||
) norm_coef_scale_a
|
||||
|> Array.to_list
|
||||
|> Array.concat
|
||||
in
|
||||
|
||||
assert (norm_coef_scale = Psp.norm_coef_scale (
|
||||
match make 0 (Cs.prim s_a).(0) 0 (Cs.prim s_b).(0) 0.
|
||||
with Some x -> x | _ -> assert false));
|
||||
|
||||
let shell_pairs =
|
||||
Array.init (Cs.size s_a) (fun i ->
|
||||
let p_a = (Cs.prim s_a).(i) in
|
||||
let p_a_expo_center = Co.( (Cs.expo s_a).(i) |. Cs.center s_a ) in
|
||||
let norm_coef_a = (Cs.norm_coef s_a).(i) in
|
||||
assert (norm_coef_a = Ps.norm_coef p_a);
|
||||
|
||||
let make = make 0 p_a in
|
||||
|
||||
Array.init (Cs.size s_b) (fun j ->
|
||||
let p_b = (Cs.prim s_b).(j) in
|
||||
|
||||
try
|
||||
let sp = make 0 p_b cutoff in
|
||||
|
||||
let sp_ = match sp with Some x -> x | None -> raise Null_contribution in
|
||||
|
||||
let norm_coef_b = (Cs.norm_coef s_b).(j) in
|
||||
assert (norm_coef_b = Ps.norm_coef p_b);
|
||||
|
||||
let norm_coef = norm_coef_a *. norm_coef_b in
|
||||
|
||||
if norm_coef < cutoff then
|
||||
raise Null_contribution;
|
||||
let p_b_expo_center = Co.( (Cs.expo s_b).(j) |. Cs.center s_b ) in
|
||||
let expo = (Cs.expo s_a).(i) +. (Cs.expo s_b).(j) in
|
||||
let expo_inv = 1. /. expo in
|
||||
let center = Co.(expo_inv |. (p_a_expo_center |+ p_b_expo_center ) )
|
||||
in
|
||||
let argexpo =
|
||||
(Cs.expo s_a).(i) *. (Cs.expo s_b).(j) *. norm_sq *. expo_inv
|
||||
in
|
||||
let g =
|
||||
(pi *. expo_inv)**(1.5) *. exp (-. argexpo)
|
||||
in
|
||||
let coef =
|
||||
norm_coef *. g
|
||||
in
|
||||
if abs_float coef < cutoff then
|
||||
raise Null_contribution;
|
||||
let center_a =
|
||||
Co.(center |- Cs.center s_a)
|
||||
in
|
||||
let monocentric =
|
||||
Cs.(center s_a = center s_b)
|
||||
in
|
||||
let totAngMomInt =
|
||||
Am.(Cs.totAngMom s_a + Cs.totAngMom s_b)
|
||||
|> Am.to_int
|
||||
in
|
||||
assert (expo= Psp.expo sp_ );
|
||||
assert (expo_inv= Psp.expo_inv sp_ );
|
||||
assert (center= Psp.center sp_ );
|
||||
Some ( (Cs.coef s_a).(i) *. (Cs.coef s_b).(j), {
|
||||
Sp.i ; j ;
|
||||
shell_a=s_a ; shell_b=s_b ;
|
||||
coef ;
|
||||
expo ; expo_inv ;
|
||||
center ; center_a ; center_ab ;
|
||||
norm_sq ; monocentric ; totAngMomInt
|
||||
})
|
||||
with
|
||||
| Null_contribution -> None
|
||||
)
|
||||
)
|
||||
Array.mapi (fun i p_a ->
|
||||
let c_a = (Cs.coef s_a).(i) in
|
||||
let make = make i p_a in
|
||||
Array.mapi (fun j p_b ->
|
||||
let c_b = (Cs.coef s_b).(j) in
|
||||
let coef = c_a *. c_b in
|
||||
assert (coef <> 0.);
|
||||
let cutoff = cutoff /. abs_float coef in
|
||||
coef, make j p_b cutoff) (Cs.prim s_b)) (Cs.prim s_a)
|
||||
|> Array.to_list
|
||||
|> Array.concat
|
||||
|> Array.to_list
|
||||
|> List.filter (function Some _ -> true | None -> false)
|
||||
|> List.map (function Some x -> x | None -> assert false)
|
||||
|> List.filter (function (_, Some _) -> true | _ -> false)
|
||||
|> List.map (function (c, Some x) -> (c,x) | _ -> assert false)
|
||||
|> Array.of_list
|
||||
in
|
||||
let coef = Array.map (fun (c,y) -> c *. y.Sp.coef) shell_pairs
|
||||
and expo_inv = Array.map (fun (_,y) -> y.Sp.expo_inv) shell_pairs
|
||||
|
||||
|
||||
let coef = Array.map (fun (c,y) -> c *. Psp.norm_coef y) shell_pairs
|
||||
and expo_inv = Array.map (fun (_,y) -> Psp.expo_inv y) shell_pairs
|
||||
in
|
||||
let shell_pairs = Array.map snd shell_pairs in
|
||||
let root = shell_pairs.(0) in
|
||||
{
|
||||
shell_a = s_a ; shell_b = s_b ; coef ; expo_inv ;
|
||||
shell_pairs ; center_ab=shell_pairs.(0).center_ab;
|
||||
norm_coef_scale ; norm_sq=shell_pairs.(0).norm_sq;
|
||||
totAngMomInt = shell_pairs.(0).Sp.totAngMomInt;
|
||||
shell_a = s_a ; shell_b = s_b ; coef ; expo_inv ; shell_pairs ;
|
||||
center_ab = Psp.a_minus_b root;
|
||||
norm_coef_scale = Psp.norm_coef_scale root;
|
||||
norm_sq=Psp.a_minus_b_sq root;
|
||||
totAngMomInt = Psp.totAngMom root |> Am.to_int;
|
||||
}
|
||||
|
||||
|
||||
@ -159,7 +79,7 @@ let norm_sq x = x.norm_sq
|
||||
let totAngMomInt x = x.totAngMomInt
|
||||
let norm_coef_scale x = x.norm_coef_scale
|
||||
|
||||
let monocentric x = x.shell_pairs.(0).Sp.monocentric
|
||||
let monocentric x = Psp.monocentric x.shell_pairs.(0)
|
||||
|
||||
(** Returns an integer characteristic of a contracted shell pair *)
|
||||
let hash a =
|
||||
@ -199,8 +119,12 @@ let of_basis basis =
|
||||
|
||||
let equivalent x y =
|
||||
(Array.length x = Array.length y) &&
|
||||
(Array.init (Array.length x) (fun k -> Sp.equivalent x.(k) y.(k))
|
||||
|> Array.fold_left (fun accu x -> x && accu) true)
|
||||
let rec eqv = function
|
||||
| 0 -> true
|
||||
| k -> if Psp.equivalent x.(k) y.(k) then
|
||||
eqv (k-1)
|
||||
else false
|
||||
in eqv (Array.length x - 1)
|
||||
|
||||
|
||||
(** A list of unique shell pairs *)
|
||||
|
@ -37,9 +37,9 @@ val shell_b : t -> ContractedShell.t
|
||||
build the contracted shell pair.
|
||||
*)
|
||||
|
||||
val shell_pairs : t -> ShellPair.t array
|
||||
(** Returns an array of {!ShellPair.t}, containing all the pairs of primitive functions.
|
||||
build the contracted shell pair.
|
||||
val shell_pairs : t -> PrimitiveShellPair.t array
|
||||
(** Returns an array of {!PrimitiveShellPair.t}, containing all the pairs of
|
||||
primitive functions used to build the contracted shell pair.
|
||||
*)
|
||||
|
||||
val coef : t -> float array
|
||||
|
@ -8,7 +8,8 @@ module Co = Coordinate
|
||||
module Cs = ContractedShell
|
||||
module Csp = ContractedShellPair
|
||||
module Po = Powers
|
||||
module Sp = ShellPair
|
||||
module Ps = PrimitiveShell
|
||||
module Psp = PrimitiveShellPair
|
||||
|
||||
type t = Mat.t
|
||||
|
||||
@ -55,18 +56,15 @@ let contracted_class shell_a shell_b : float Zmap.t =
|
||||
if (abs_float coef_prod) > 1.e-4*.cutoff then
|
||||
begin
|
||||
let center_pa =
|
||||
sp.(ab).Sp.center_a
|
||||
Psp.center_minus_a sp.(ab)
|
||||
in
|
||||
let expo_inv =
|
||||
(Csp.expo_inv shell_p).(ab)
|
||||
in
|
||||
let i, j =
|
||||
sp.(ab).Sp.i, sp.(ab).Sp.j
|
||||
in
|
||||
let expo_a =
|
||||
(Cs.expo sp.(ab).Sp.shell_a).(i)
|
||||
Ps.expo (Psp.shell_a sp.(ab))
|
||||
and expo_b =
|
||||
(Cs.expo sp.(ab).Sp.shell_b).(j)
|
||||
Ps.expo (Psp.shell_b sp.(ab))
|
||||
in
|
||||
|
||||
let xyz_of_int k =
|
||||
|
@ -8,7 +8,8 @@ module Co = Coordinate
|
||||
module Cs = ContractedShell
|
||||
module Csp = ContractedShellPair
|
||||
module Po = Powers
|
||||
module Sp = ShellPair
|
||||
module Ps = PrimitiveShell
|
||||
module Psp = PrimitiveShellPair
|
||||
|
||||
|
||||
|
||||
@ -118,9 +119,9 @@ let contracted_class_shell_pair ~zero_m shell_p geometry : float Zmap.t =
|
||||
|
||||
let norm_coef_scale_p = Csp.norm_coef_scale shell_p
|
||||
in
|
||||
for ab=0 to (Array.length (Csp.shell_pairs shell_p) - 1)
|
||||
let sp = Csp.shell_pairs shell_p in
|
||||
for ab=0 to Array.length sp - 1
|
||||
do
|
||||
let b = (Csp.shell_pairs shell_p).(ab).Sp.j in
|
||||
try
|
||||
begin
|
||||
let coef_prod = (Csp.coef shell_p).(ab) in
|
||||
@ -134,14 +135,18 @@ let contracted_class_shell_pair ~zero_m shell_p geometry : float Zmap.t =
|
||||
(Csp.expo_inv shell_p).(ab)
|
||||
in
|
||||
|
||||
let expo_b =
|
||||
Ps.expo (Psp.shell_b sp.(ab))
|
||||
in
|
||||
|
||||
let center_ab =
|
||||
Csp.center_ab shell_p
|
||||
in
|
||||
let center_p =
|
||||
(Csp.shell_pairs shell_p).(ab).Sp.center
|
||||
Psp.center sp.(ab)
|
||||
in
|
||||
let center_pa =
|
||||
Co.(center_p |- Cs.center shell_a)
|
||||
Psp.center_minus_a sp.(ab)
|
||||
in
|
||||
|
||||
for c=0 to Array.length geometry - 1 do
|
||||
@ -178,8 +183,8 @@ let contracted_class_shell_pair ~zero_m shell_p geometry : float Zmap.t =
|
||||
hvrr_one_e
|
||||
angMomA angMomB
|
||||
zero_m_array
|
||||
(Cs.expo shell_b).(b)
|
||||
(Csp.expo_inv shell_p).(ab)
|
||||
expo_b
|
||||
expo_pq_inv
|
||||
center_ab center_pa center_pc
|
||||
map
|
||||
in
|
||||
|
@ -10,7 +10,7 @@ module Co = Coordinate
|
||||
module Cs = ContractedShell
|
||||
module Csp = ContractedShellPair
|
||||
module Po = Powers
|
||||
module Sp = ShellPair
|
||||
module Psp = PrimitiveShellPair
|
||||
|
||||
let cutoff = integrals_cutoff
|
||||
|
||||
@ -66,7 +66,7 @@ let contracted_class shell_a shell_b : float Zmap.t =
|
||||
(Csp.expo_inv shell_p).(ab)
|
||||
in
|
||||
let center_pa =
|
||||
sp.(ab).Sp.center_a
|
||||
Psp.center_minus_a sp.(ab)
|
||||
in
|
||||
|
||||
Array.iteri (fun i key ->
|
||||
|
@ -153,3 +153,8 @@ let norm_coef x = x.norm_coef
|
||||
let expo x = x.expo
|
||||
|
||||
let center x = x.center
|
||||
|
||||
let shell_a x = x.shell_a
|
||||
|
||||
let shell_b x = x.shell_b
|
||||
|
||||
|
@ -111,3 +111,9 @@ val center_minus_a : t -> Coordinate.t
|
||||
val norm_coef : t -> float
|
||||
(** Normalization coefficient of the shell pair. *)
|
||||
|
||||
val shell_a : t -> PrimitiveShell.t
|
||||
(** Returns the first primitive shell that was used to build the shell pair. *)
|
||||
|
||||
val shell_b : t -> PrimitiveShell.t
|
||||
(** Returns the second primitive shell that was used to build the shell pair. *)
|
||||
|
||||
|
@ -1,40 +0,0 @@
|
||||
open Util
|
||||
open Constants
|
||||
|
||||
type t = {
|
||||
expo : float; (* alpha + beta *)
|
||||
expo_inv : float; (* 1/(alpha + beta) *)
|
||||
center : Coordinate.t; (* P = (alpha * A + beta B)/(alpha+beta) *)
|
||||
center_a : Coordinate.t; (* P - A *)
|
||||
center_ab: Coordinate.t; (* A - B *)
|
||||
norm_sq : float; (* |A-B|^2 *)
|
||||
coef : float; (* norm_coef * coef_a * coef_b * g, with
|
||||
g = (pi/(alpha+beta))^(3/2) exp (-|A-B|^2 * alpha*beta/(alpha+beta)) *)
|
||||
totAngMomInt : int ;
|
||||
i : int;
|
||||
j : int;
|
||||
shell_a : ContractedShell.t;
|
||||
shell_b : ContractedShell.t;
|
||||
monocentric : bool
|
||||
}
|
||||
|
||||
|
||||
(** Returns an integer characteristic of a primitive shell pair *)
|
||||
let hash a =
|
||||
Hashtbl.hash a
|
||||
|
||||
let equivalent a b =
|
||||
a = b
|
||||
(*
|
||||
Hashtbl.hash (a.expo, a.center_a, a.center_ab, a.coef, ContractedShell.totAngMom a.shell_a, ContractedShell.totAngMom a.shell_b)
|
||||
*)
|
||||
|
||||
|
||||
(** Comparison function, used for sorting *)
|
||||
let cmp a b =
|
||||
hash a - hash b
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -4,8 +4,9 @@ module Am = AngularMomentum
|
||||
module Co = Coordinate
|
||||
module Cs = ContractedShell
|
||||
module Csp = ContractedShellPair
|
||||
module Sp = ShellPair
|
||||
module Po = Powers
|
||||
module Psp = PrimitiveShellPair
|
||||
module Ps = PrimitiveShell
|
||||
|
||||
let cutoff = Constants.integrals_cutoff
|
||||
let cutoff2 = cutoff *. cutoff
|
||||
@ -279,7 +280,6 @@ let contracted_class_shell_pairs ~zero_m ?schwartz_p ?schwartz_q shell_p shell_q
|
||||
and shell_c = Csp.shell_a shell_q
|
||||
and shell_d = Csp.shell_b shell_q
|
||||
and sp = Csp.shell_pairs shell_p
|
||||
and sq = Csp.shell_pairs shell_q
|
||||
in
|
||||
let maxm = Csp.totAngMomInt shell_p + Csp.totAngMomInt shell_q in
|
||||
|
||||
@ -301,38 +301,38 @@ let contracted_class_shell_pairs ~zero_m ?schwartz_p ?schwartz_q shell_p shell_q
|
||||
|
||||
(* Compute all integrals in the shell for each pair of significant shell pairs *)
|
||||
|
||||
let norm_coef_scale_p = Csp.norm_coef_scale shell_p in
|
||||
let norm_coef_scale_p_list = Array.to_list (Csp.norm_coef_scale shell_p) in
|
||||
let norm_coef_scale_q = Csp.norm_coef_scale shell_q in
|
||||
|
||||
for ab=0 to (Array.length sp - 1) do
|
||||
let cab = (Csp.coef shell_p).(ab) in
|
||||
let b = (Csp.shell_pairs shell_p).(ab).Sp.j in
|
||||
let expo_b = (Cs.expo shell_b).(b) in
|
||||
let expo_inv_p = (Csp.expo_inv shell_p).(ab) in
|
||||
let center_ab = sp.(ab).Sp.center_ab in
|
||||
let center_pa = sp.(ab).Sp.center_a in
|
||||
|
||||
let sp_ab = (Csp.shell_pairs shell_p).(ab) in
|
||||
let c_ab = (Csp.coef shell_p).(ab) in
|
||||
let expo_b = Ps.expo (Psp.shell_b sp_ab) in
|
||||
let expo_inv_p = Psp.expo_inv sp_ab in
|
||||
let center_ab = Psp.a_minus_b sp_ab in
|
||||
let center_pa = Psp.center_minus_a sp_ab in
|
||||
|
||||
for cd=0 to (Array.length (Csp.shell_pairs shell_q) - 1) do
|
||||
let coef_prod =
|
||||
cab *. (Csp.coef shell_q).(cd)
|
||||
in
|
||||
|
||||
let sp_cd = (Csp.shell_pairs shell_q).(cd) in
|
||||
let c_cd = (Csp.coef shell_q).(cd) in
|
||||
let coef_prod = c_ab *. c_cd in
|
||||
|
||||
(** Screening on the product of coefficients *)
|
||||
try
|
||||
if (abs_float coef_prod) < 1.e-3 *. cutoff then
|
||||
raise NullQuartet;
|
||||
|
||||
let center_pq =
|
||||
Co.(sp.(ab).Sp.center |- sq.(cd).Sp.center)
|
||||
in
|
||||
let norm_pq_sq =
|
||||
Co.dot center_pq center_pq
|
||||
in
|
||||
|
||||
let expo_inv_q = (Csp.expo_inv shell_q).(cd) in
|
||||
|
||||
let center_pq = Co.(Psp.center sp_ab |- Psp.center sp_cd) in
|
||||
let norm_pq_sq = Co.dot center_pq center_pq in
|
||||
let expo_inv_q = Psp.expo_inv sp_cd in
|
||||
let expo_pq_inv = expo_inv_p +. expo_inv_q in
|
||||
|
||||
let zero_m_array =
|
||||
zero_m ~maxm ~expo_pq_inv ~norm_pq_sq
|
||||
in
|
||||
|
||||
begin
|
||||
match Cs.(totAngMom shell_a, totAngMom shell_b,
|
||||
totAngMom shell_c, totAngMom shell_d) with
|
||||
@ -342,16 +342,14 @@ let contracted_class_shell_pairs ~zero_m ?schwartz_p ?schwartz_q shell_p shell_q
|
||||
in
|
||||
contracted_class.(0) <- contracted_class.(0) +. coef_prod *. integral
|
||||
| _ ->
|
||||
let d = (Csp.shell_pairs shell_q).(cd).Sp.j in
|
||||
let expo_d = (Cs.expo shell_d).(d) in
|
||||
let expo_d = Ps.expo (Psp.shell_b sp_cd) in
|
||||
let map_1d = Zmap.create (4*maxm) in
|
||||
let map_2d = Zmap.create (Array.length class_indices) in
|
||||
let center_cd = sq.(cd).Sp.center_ab in
|
||||
let center_qc = sq.(cd).Sp.center_a in
|
||||
let center_cd = Psp.a_minus_b sp_cd in
|
||||
let center_qc = Psp.center_minus_a sp_cd in
|
||||
let norm_coef_scale =
|
||||
Array.to_list norm_coef_scale_p
|
||||
|> List.map (fun v1 ->
|
||||
Array.map (fun v2 -> v1 *. v2) norm_coef_scale_q)
|
||||
List.map (fun v1 -> Array.map (fun v2 -> v1 *. v2) norm_coef_scale_q)
|
||||
norm_coef_scale_p_list
|
||||
|> Array.concat
|
||||
in
|
||||
|
||||
|
@ -6,8 +6,9 @@ module Am = AngularMomentum
|
||||
module Co = Coordinate
|
||||
module Cs = ContractedShell
|
||||
module Csp = ContractedShellPair
|
||||
module Sp = ShellPair
|
||||
module Po = Powers
|
||||
module Psp = PrimitiveShellPair
|
||||
module Ps = PrimitiveShell
|
||||
|
||||
exception NullQuartet
|
||||
exception Found
|
||||
@ -629,9 +630,9 @@ let contracted_class_shell_pairs ~zero_m ?schwartz_p ?schwartz_q shell_p shell_q
|
||||
begin
|
||||
try
|
||||
let expo_inv_p =
|
||||
Vec.init np (fun ab -> sp.(ab-1).Sp.expo_inv)
|
||||
Vec.init np (fun ab -> Psp.expo_inv sp.(ab-1))
|
||||
and expo_inv_q =
|
||||
Vec.init nq (fun cd -> sq.(cd-1).Sp.expo_inv)
|
||||
Vec.init nq (fun cd -> Psp.expo_inv sq.(cd-1))
|
||||
in
|
||||
|
||||
let coef =
|
||||
@ -652,7 +653,7 @@ let contracted_class_shell_pairs ~zero_m ?schwartz_p ?schwartz_q shell_p shell_q
|
||||
in
|
||||
|
||||
let center_pq =
|
||||
Co.(sp.(i-1).Sp.center |- sq.(j-1).Sp.center)
|
||||
Co.(Psp.center sp.(i-1) |- Psp.center sq.(j-1))
|
||||
in
|
||||
let norm_pq_sq =
|
||||
Co.dot center_pq center_pq
|
||||
@ -677,15 +678,15 @@ let contracted_class_shell_pairs ~zero_m ?schwartz_p ?schwartz_q shell_p shell_q
|
||||
in
|
||||
|
||||
let expo_inv_p =
|
||||
Array.map (fun shell_ab -> shell_ab.Sp.expo_inv) sp
|
||||
Array.map (fun shell_ab -> Psp.expo_inv shell_ab) sp
|
||||
and expo_inv_q =
|
||||
Array.map (fun shell_cd -> shell_cd.Sp.expo_inv) sq
|
||||
Array.map (fun shell_cd -> Psp.expo_inv shell_cd) sq
|
||||
in
|
||||
|
||||
let expo_b =
|
||||
Array.map (fun shell_ab -> (Cs.expo shell_b).(shell_ab.Sp.j)) sp
|
||||
Array.map (fun shell_ab -> Ps.expo (Psp.shell_b shell_ab) ) sp
|
||||
and expo_d =
|
||||
Array.map (fun shell_cd -> (Cs.expo shell_d).(shell_cd.Sp.j)) sq
|
||||
Array.map (fun shell_cd -> Ps.expo (Psp.shell_b shell_cd) ) sq
|
||||
in
|
||||
let norm_coef_scale_p = Csp.norm_coef_scale shell_p in
|
||||
|
||||
@ -698,7 +699,7 @@ let contracted_class_shell_pairs ~zero_m ?schwartz_p ?schwartz_q shell_p shell_q
|
||||
let shell_cd = sq.(cd)
|
||||
in
|
||||
let cpq =
|
||||
Co.(shell_ab.Sp.center |- shell_cd.Sp.center)
|
||||
Co.(Psp.center shell_ab |- Psp.center shell_cd)
|
||||
in
|
||||
match xyz with
|
||||
| 0 -> Co.get X cpq;
|
||||
@ -718,7 +719,7 @@ let contracted_class_shell_pairs ~zero_m ?schwartz_p ?schwartz_q shell_p shell_q
|
||||
Array.init np (fun ab ->
|
||||
let shell_ab = sp.(ab) in
|
||||
let cpa =
|
||||
Co.(shell_ab.Sp.center |- Cs.center shell_a)
|
||||
Co.(Psp.center shell_ab |- Cs.center shell_a)
|
||||
in
|
||||
match xyz with
|
||||
| 0 -> Co.(get X cpa);
|
||||
@ -737,7 +738,7 @@ let contracted_class_shell_pairs ~zero_m ?schwartz_p ?schwartz_q shell_p shell_q
|
||||
Array.init nq (fun cd ->
|
||||
let shell_cd = sq.(cd) in
|
||||
let cqc =
|
||||
Co.(shell_cd.Sp.center |- Cs.center shell_c)
|
||||
Co.(Psp.center shell_cd |- Cs.center shell_c)
|
||||
in
|
||||
match xyz with
|
||||
| 0 -> Co.(get X cqc);
|
||||
|
Loading…
Reference in New Issue
Block a user