10
1
mirror of https://gitlab.com/scemama/QCaml.git synced 2024-11-15 18:43:40 +01:00
QCaml/Basis/OneElectronRR.ml

205 lines
5.6 KiB
OCaml

open Util
open Constants
exception NullPair
module Am = AngularMomentum
module Co = Coordinate
module Cs = ContractedShell
module Csp = ContractedShellPair
module Po = Powers
module Ps = PrimitiveShell
module Psp = PrimitiveShellPair
(** Horizontal and Vertical Recurrence Relations (HVRR) *)
let hvrr_one_e angMom_a angMom_b
zero_m_array expo_b expo_inv_p
center_ab center_pa center_pc
map =
let maxm = angMom_a.Po.tot + angMom_b.Po.tot in
let maxsze = maxm+1 in
let get_xyz angMom =
match angMom with
| { Po.y=0 ; z=0 ; _ } -> Co.X
| { z=0 ; _ } -> Co.Y
| _ -> Co.Z
in
(** Vertical recurrence relations *)
let rec vrr angMom_a =
let { Po.x=ax ; y=ay ; z=az } = angMom_a in
if ax < 0 || ay < 0 || az < 0 then raise Exit
else
match angMom_a.Po.tot with
| 0 -> zero_m_array
| _ ->
let key = Zkey.of_powers_three angMom_a in
try Zmap.find map key with
| Not_found ->
let result =
let xyz = get_xyz angMom_a in
let am = Po.decr xyz angMom_a in
let amxyz = Po.get xyz am in
let f1 = Co.get xyz center_pa in
let f2 = expo_inv_p *. Co.get xyz center_pc in
if amxyz < 1 then
let v1 = vrr am in
Array.init (maxsze - angMom_a.Po.tot)
(fun m -> f1 *. v1.(m) -. f2 *. v1.(m+1))
else
let v3 =
let amm = Po.decr xyz am in
vrr amm
in
let v1 = vrr am in
let f3 = float_of_int amxyz *. expo_inv_p *. 0.5 in
Array.init (maxsze - angMom_a.Po.tot)
(fun m -> f1 *. v1.(m) -. f2 *. v1.(m+1) +.
f3 *. (v3.(m) -. expo_inv_p *. v3.(m+1))
)
in Zmap.add map key result;
result
(** Horizontal recurrence relations *)
and hrr angMom_a angMom_b =
match angMom_b.Po.tot with
| 0 -> (vrr angMom_a).(0)
| _ ->
let xyz = get_xyz angMom_b in
let bxyz = Po.get xyz angMom_b in
if (bxyz < 1) then 0. else
let ap = Po.incr xyz angMom_a in
let bm = Po.decr xyz angMom_b in
let h1 = hrr ap bm in
let f2 = Co.get xyz center_ab in
if abs_float f2 < integrals_cutoff then h1 else
let h2 = hrr angMom_a bm in
h1 +. f2 *. h2
in
hrr angMom_a angMom_b
(** Computes all the one-electron integrals of the contracted shell pair *)
let contracted_class_shell_pair ~zero_m shell_p geometry : float Zmap.t =
let shell_a = Csp.shell_a shell_p
and shell_b = Csp.shell_b shell_p
in
let maxm =
Am.(Cs.totAngMom shell_a + Cs.totAngMom shell_b)
|> Am.to_int
in
(* Pre-computation of integral class indices *)
let class_indices =
Am.zkey_array (Am.Doublet Cs.(totAngMom shell_a, totAngMom shell_b))
in
let contracted_class =
Array.make (Array.length class_indices) 0.;
in
(* Compute all integrals in the shell for each pair of significant shell pairs *)
let norm_coef_scale_p = Csp.norm_coef_scale shell_p
in
let sp = Csp.shell_pairs shell_p in
for ab=0 to Array.length sp - 1
do
try
begin
let coef_prod = (Csp.coef shell_p).(ab) in
(** Screening on the product of coefficients *)
if abs_float coef_prod < 1.e-3 *. integrals_cutoff then
raise NullPair;
let expo_pq_inv =
(Csp.expo_inv shell_p).(ab)
in
let expo_b =
Ps.expo (Psp.shell_b sp.(ab))
in
let center_ab =
Csp.center_ab shell_p
in
let center_p =
Psp.center sp.(ab)
in
let center_pa =
Psp.center_minus_a sp.(ab)
in
for c=0 to Array.length geometry - 1 do
let element, nucl_coord = geometry.(c) in
let charge = Element.to_charge element |> Charge.to_float in
let center_pc =
Co.(center_p |- nucl_coord )
in
let norm_pq_sq =
Co.dot center_pc center_pc
in
let zero_m_array =
zero_m ~maxm ~expo_pq_inv ~norm_pq_sq
in
match Cs.(totAngMom shell_a, totAngMom shell_b) with
| Am.(S,S) ->
let integral = zero_m_array.(0) in
contracted_class.(0) <- contracted_class.(0) -. coef_prod *. integral *. charge
| _ ->
let map = Zmap.create (2*maxm) in
let norm_coef_scale = norm_coef_scale_p in
(* Compute the integral class from the primitive shell quartet *)
class_indices
|> Array.iteri (fun i key ->
let (angMomA,angMomB) =
match Zkey.to_powers key with
| Zkey.Six x -> x
| _ -> assert false
in
let norm = norm_coef_scale.(i) in
let coef_prod = coef_prod *. norm in
let integral =
hvrr_one_e
angMomA angMomB
zero_m_array
expo_b
expo_pq_inv
center_ab center_pa center_pc
map
in
contracted_class.(i) <- contracted_class.(i) -. coef_prod *. integral *. charge
)
done
end
with NullPair -> ()
done;
let result =
Zmap.create (Array.length contracted_class)
in
Array.iteri (fun i key -> Zmap.add result key contracted_class.(i)) class_indices;
result