10
1
mirror of https://gitlab.com/scemama/QCaml.git synced 2025-01-05 10:58:47 +01:00
QCaml/mo/lib/fock.ml

241 lines
7.0 KiB
OCaml
Raw Normal View History

2020-10-18 01:58:22 +02:00
open Linear_algebra
open Common
type ao = Ao.Ao_dim.t
type t =
{
fock : (ao,ao) Matrix.t ;
core : (ao,ao) Matrix.t ;
coulomb : (ao,ao) Matrix.t ;
exchange : (ao,ao) Matrix.t ;
}
let fock t = t.fock
let core t = t.core
let coulomb t = t.coulomb
let exchange t = t.exchange
let make_rhf ~density ?(threshold=Constants.epsilon) ao_basis =
let m_P = density
and m_T = Ao.Basis.kin_ints ao_basis
and m_V = Ao.Basis.eN_ints ao_basis
and m_G = Ao.Basis.ee_ints ao_basis
in
let nBas = Matrix.dim1 m_T
in
let m_Hc = Matrix.add m_T m_V
and m_J = Array.make_matrix nBas nBas 0.
and m_K = Array.make_matrix nBas nBas 0.
in
for sigma = 1 to nBas do
let m_Ksigma = m_K.(sigma-1) in
for nu = 1 to nBas do
let m_Jnu = m_J.(nu-1) in
for lambda = 1 to nBas do
let pJ = m_P%:(lambda,sigma)
and pK = 0.5 *. (m_P%:(lambda,nu))
in
match (abs_float pJ > threshold , abs_float pK > threshold, nu < sigma) with
| (false, false, _) -> ()
| (true , true , true) ->
begin
for mu = 1 to nu do
let integral =
Four_idx_storage.get_phys m_G mu lambda nu sigma
in
if (integral <> 0.) then begin
m_Jnu.(mu-1) <- m_Jnu.(mu-1) +. pJ *. integral;
m_Ksigma.(mu-1) <- m_Ksigma.(mu-1) +. pK *. integral
end
done;
for mu = nu+1 to sigma do
m_Ksigma.(mu-1) <- m_Ksigma.(mu-1) +.
pK *. Four_idx_storage.get_phys m_G mu lambda nu sigma
done
end
| (true , true , false) ->
begin
for mu = 1 to sigma do
let integral =
Four_idx_storage.get_phys m_G mu lambda nu sigma
in
if (integral <> 0.) then begin
m_Jnu.(mu-1) <- m_Jnu.(mu-1) +. pJ *. integral;
m_Ksigma.(mu-1) <- m_Ksigma.(mu-1) +. pK *. integral
end
done;
for mu = sigma+1 to nu do
m_Jnu.(mu-1) <-
m_Jnu.(mu-1) +. pJ *. Four_idx_storage.get_phys m_G mu lambda nu sigma
done
end
| (false, true , _) ->
for mu = 1 to sigma do
m_Ksigma.(mu-1) <-
m_Ksigma.(mu-1) +. pK *. Four_idx_storage.get_phys m_G mu lambda nu sigma
done
| (true , false, _) ->
for mu = 1 to nu do
m_Jnu.(mu-1) <-
m_Jnu.(mu-1) +. pJ *. Four_idx_storage.get_phys m_G mu lambda nu sigma
done
done
done;
for mu = 1 to sigma-1 do
m_K.(mu-1).(sigma-1) <- m_Ksigma.(mu-1);
done
done;
for nu = 1 to nBas do
let m_Jnu = m_J.(nu-1) in
for mu = 1 to nu-1 do
m_J.(mu-1).(nu-1) <- m_Jnu.(mu-1)
done
done;
let m_J = Matrix.of_array m_J
and m_K = Matrix.of_array m_K
in
{ fock = Matrix.add m_Hc (Matrix.sub m_J m_K) ;
core = m_Hc ; coulomb = m_J ; exchange = m_K }
let make_uhf ~density_same ~density_other ?(threshold=Constants.epsilon) ao_basis =
let m_P_a = density_same
and m_P_b = density_other
and m_T = Ao.Basis.kin_ints ao_basis
and m_V = Ao.Basis.eN_ints ao_basis
and m_G = Ao.Basis.ee_ints ao_basis
in
let nBas = Matrix.dim1 m_T
in
let m_Hc = Matrix.add m_T m_V
and m_J = Array.make_matrix nBas nBas 0.
and m_K = Array.make_matrix nBas nBas 0.
in
for sigma = 1 to nBas do
let m_Ksigma = m_K.(sigma-1) in
for nu = 1 to nBas do
let m_Jnu = m_J.(nu-1) in
for lambda = 1 to nBas do
let pJ = m_P_a%:(lambda,sigma) +. m_P_b%:(lambda,sigma)
and pK = m_P_a%:(lambda,nu)
in
match (abs_float pJ > threshold , abs_float pK > threshold, nu < sigma) with
| (false, false, _) -> ()
| (true , true , true) ->
begin
for mu = 1 to nu do
let integral =
Four_idx_storage.get_phys m_G mu lambda nu sigma
in
if (integral <> 0.) then begin
m_Jnu.(mu-1) <- m_Jnu.(mu-1) +. pJ *. integral;
m_Ksigma.(mu-1) <- m_Ksigma.(mu-1) +. pK *. integral
end
done;
for mu = nu+1 to sigma do
m_Ksigma.(mu-1) <- m_Ksigma.(mu-1) +.
pK *.Four_idx_storage.get_phys m_G mu lambda nu sigma
done
end
| (true , true , false) ->
begin
for mu = 1 to sigma do
let integral =
Four_idx_storage.get_phys m_G mu lambda nu sigma
in
if (integral <> 0.) then begin
m_Jnu.(mu-1) <- m_Jnu.(mu-1) +. pJ *. integral;
m_Ksigma.(mu-1) <- m_Ksigma.(mu-1) +. pK *. integral
end
done;
for mu = sigma+1 to nu do
m_Jnu.(mu-1) <-
m_Jnu.(mu-1) +. pJ *. Four_idx_storage.get_phys m_G mu lambda nu sigma
done
end
| (false, true , _) ->
for mu = 1 to sigma do
m_Ksigma.(mu-1) <-
m_Ksigma.(mu-1) +. pK *. Four_idx_storage.get_phys m_G mu lambda nu sigma
done
| (true , false, _) ->
for mu = 1 to nu do
m_Jnu.(mu-1) <-
m_Jnu.(mu-1) +. pJ *. Four_idx_storage.get_phys m_G mu lambda nu sigma
done
done
done;
for mu = 1 to sigma-1 do
m_K.(mu-1).(sigma-1) <- m_Ksigma.(mu-1);
done
done;
for nu = 1 to nBas do
let m_Jnu = m_J.(nu-1) in
for mu = 1 to nu-1 do
m_J.(mu-1).(nu-1) <- m_Jnu.(mu-1)
done
done;
let m_J = Matrix.of_array m_J
and m_K = Matrix.of_array m_K
in
{ fock = Matrix.add m_Hc (Matrix.sub m_J m_K) ;
core = m_Hc ; coulomb = m_J ; exchange = m_K }
let op ~f f1 f2 =
assert (f1.core = f2.core);
let m_Hc = f1.core
and m_J = f f1.coulomb f2.coulomb
and m_K = f f1.exchange f2.exchange
in
{
fock = Matrix.add m_Hc (Matrix.sub m_J m_K);
core = m_Hc;
coulomb = m_J;
exchange = m_K;
}
let add = op ~f:(fun a b -> Matrix.add a b)
let sub = op ~f:(fun a b -> Matrix.sub a b)
let scale alpha f1 =
let m_Hc = f1.core
and m_J = Matrix.copy f1.coulomb
and m_K = Matrix.copy f1.exchange
in
Matrix.scale_inplace alpha m_J;
Matrix.scale_inplace alpha m_K;
{
fock = Matrix.add m_Hc (Matrix.sub m_J m_K);
core = m_Hc;
coulomb = m_J;
exchange = m_K;
}
let pp ppf a =
Format.fprintf ppf "@[<2>";
Format.fprintf ppf "@[ Fock matrix:@[<2>@[%a@]@.]@]" Matrix.pp a.fock;
Format.fprintf ppf "@[ Core Hamiltonian:@[<2>@[%a@]@.]@]" Matrix.pp a.core;
Format.fprintf ppf "@[ Coulomb matrix:@[<2>@[%a@]@.]@]" Matrix.pp a.coulomb;
Format.fprintf ppf "@[ Exchange matrix:@[<2>@[%a@]@.]@]" Matrix.pp a.exchange;
Format.fprintf ppf "@]"