Added Hartree_Fock

This commit is contained in:
Anthony Scemama 2020-10-18 01:58:22 +02:00
parent 16adf48234
commit 04d9e14470
28 changed files with 1366 additions and 76 deletions

1
ao/lib/ao_dim.ml Normal file
View File

@ -0,0 +1 @@
type t

1
ao/lib/ao_dim.mli Normal file
View File

@ -0,0 +1 @@
type t

View File

@ -9,6 +9,8 @@ type t =
cartesian : bool
}
type ao = Ao_dim.t
let of_nuclei_and_basis_filename ?(kind=`Gaussian) ?operators ?(cartesian=false)
~nuclei filename =
match kind with

View File

@ -10,6 +10,7 @@ type basis =
| Gaussian of Basis_gaussian.t
type t
type ao = Ao_dim.t
(** {1 Accessors} *)
@ -19,37 +20,37 @@ val size : t -> int
val ao_basis : t -> basis
(** One-electron basis set *)
val overlap : t -> ('a,'a) Matrix.t
val overlap : t -> (ao,ao) Matrix.t
(** Overlap matrix *)
val multipole : t -> ('a,'a) Matrix.t array
val multipole : t -> (ao,ao) Matrix.t array
(** Multipole matrices *)
val ortho : t -> ('a,'a) Matrix.t
val ortho : t -> (ao,'a) Matrix.t
(** Orthonormalization matrix of the overlap *)
val eN_ints : t -> ('a,'a) Matrix.t
val eN_ints : t -> (ao,ao) Matrix.t
(** Electron-nucleus potential integrals *)
val kin_ints : t -> ('a,'a) Matrix.t
val kin_ints : t -> (ao,ao) Matrix.t
(** Kinetic energy integrals *)
val ee_ints : t -> 'a Four_idx_storage.t
val ee_ints : t -> ao Four_idx_storage.t
(** Electron-electron potential integrals *)
val ee_lr_ints : t -> 'a Four_idx_storage.t
val ee_lr_ints : t -> ao Four_idx_storage.t
(** Electron-electron long-range potential integrals *)
val f12_ints : t -> 'a Four_idx_storage.t
val f12_ints : t -> ao Four_idx_storage.t
(** Electron-electron potential integrals *)
val f12_over_r12_ints : t -> 'a Four_idx_storage.t
val f12_over_r12_ints : t -> ao Four_idx_storage.t
(** Electron-electron potential integrals *)
val cartesian : t -> bool
(** If true, use cartesian Gaussians (6d, 10f, ...) *)
val values : t -> Coordinate.t -> 'a Vector.t
val values : t -> Coordinate.t -> ao Vector.t
(** Values of the AOs evaluated at a given point *)

View File

@ -33,21 +33,21 @@ let make_tests name t =
let test_overlap () =
let reference =
Matrix.sym_matrix_of_file (wd ^ Filename.dir_sep ^ name ^ "_overlap.ref")
Matrix.sym_of_file (wd ^ Filename.dir_sep ^ name ^ "_overlap.ref")
in
check_matrix "Overlap" (overlap t) reference
in
let test_eN_ints () =
let reference =
Matrix.sym_matrix_of_file (wd ^ Filename.dir_sep ^ name ^ "_nuc.ref")
Matrix.sym_of_file (wd ^ Filename.dir_sep ^ name ^ "_nuc.ref")
in
check_matrix "eN_ints" (eN_ints t) reference
in
let test_kin_ints () =
let reference =
Matrix.sym_matrix_of_file (wd ^ Filename.dir_sep ^ name ^ "_kin.ref")
Matrix.sym_of_file (wd ^ Filename.dir_sep ^ name ^ "_kin.ref")
in
check_matrix "kin_ints" (kin_ints t) reference
in

View File

@ -35,21 +35,21 @@ let make_tests name t =
let test_overlap () =
let reference =
Matrix.sym_matrix_of_file (wd ^ Filename.dir_sep ^ name ^ "_overlap.ref")
Matrix.sym_of_file (wd ^ Filename.dir_sep ^ name ^ "_overlap.ref")
in
check_matrix "Overlap" (overlap t) reference
in
let test_eN_ints () =
let reference =
Matrix.sym_matrix_of_file (wd ^ Filename.dir_sep ^ name ^ "_nuc.ref")
Matrix.sym_of_file (wd ^ Filename.dir_sep ^ name ^ "_nuc.ref")
in
check_matrix "eN_ints" (eN_ints t) reference
in
let test_kin_ints () =
let reference =
Matrix.sym_matrix_of_file (wd ^ Filename.dir_sep ^ name ^ "_kin.ref")
Matrix.sym_of_file (wd ^ Filename.dir_sep ^ name ^ "_kin.ref")
in
check_matrix "kin_ints" (kin_ints t) reference
in
@ -69,7 +69,6 @@ let make_tests name t =
in
check_eri (ee_lr_ints t) reference
in
[
"Overlap", `Quick, test_overlap;
"eN_ints", `Quick, test_eN_ints;

View File

@ -426,13 +426,13 @@ let four_index_transform_dense_sparse ds coef source =
Matrix.gemm_inplace ~transa:`T ~c:p o coef;
(* p_j_kalpha *)
let p' = Matrix.reshape p ao_num ao_mo_num in
let p' = Matrix.reshape_inplace ao_num ao_mo_num p in
(* q_kalpha_beta = \sum_j p_j_kalpha c_j_beta *)
Matrix.gemm_inplace ~transa:`T ~c:q p' coef;
(* q_k_alphabeta = \sum_j p_j_kalpha c_j_beta *)
let q' = Matrix.reshape q ao_num mo_num_2 in
let q' = Matrix.reshape_inplace ao_num mo_num_2 q in
(* u_alphabeta_gamma = \sum_k q_k_alphabeta c_k_gamma *)
Matrix.gemm_inplace ~transa:`T ~beta:1. ~alpha:coefx.{l,delta} ~c:u q' coef ;

View File

@ -0,0 +1,10 @@
let (%.) = Vector.(%.)
let (%:) = Matrix.(%:)
module Conventions = Conventions
module Diis = Diis
module Four_idx_storage = Four_idx_storage
module Matrix = Matrix
module Orthonormalization = Orthonormalization
module Spherical_to_cartesian = Spherical_to_cartesian
module Vector = Vector

View File

@ -48,7 +48,7 @@ external of_bigarray_inplace : (float, Stdlib.Bigarray.float64_elt, Stdlib.Bigar
let to_bigarray t = lacpy t
let of_bigarray t = lacpy t
let reshape a m n =
let reshape_inplace m n a =
assert ( (dim1 a) * (dim2 a) = m*n);
let b =
to_bigarray a
@ -56,6 +56,14 @@ let reshape a m n =
in
Bigarray.reshape_2 b m n
let reshape_vec_inplace m n v =
assert ( Vector.dim v = m*n);
let b =
Vector.to_bigarray_inplace v
|> Bigarray.genarray_of_array1
in
Bigarray.reshape_2 b m n
let col_inplace t j =
Mat.col t j
|> Vector.of_bigarray_inplace
@ -200,6 +208,19 @@ let of_col_vecs_list a =
|> List.rev
|> Mat.of_col_vecs_list
let of_array a =
Bigarray.Array2.of_array Bigarray.Float64 Bigarray.fortran_layout a
let to_array a =
let result = Array.make_matrix (Mat.dim1 a) (Mat.dim2 a) 0. in
for i=1 to Mat.dim1 a do
let result_i = result.(i-1) in
for j=1 to Mat.dim2 a do
result_i.(j-1) <- a.{i,j}
done
done;
result
let normalize_mat_inplace t =
let norm = Mat.as_vec t |> nrm2 in
Mat.scal norm t
@ -227,6 +248,9 @@ let x_o_xt ~o ~x =
gemm o x ~transb:`T
|> gemm x
let amax t =
Mat.as_vec t |> amax
let pp ppf m =
let rows = Mat.dim1 m
and cols = Mat.dim2 m
@ -263,7 +287,7 @@ let outer_product ?(alpha=1.0) u v =
outer_product_inplace m ~alpha u v;
m
let matrix_of_file filename =
let of_file filename =
let ic = Scanf.Scanning.open_in filename in
let rec read_line accu =
let result =
@ -290,9 +314,9 @@ let matrix_of_file filename =
result
let sym_matrix_of_file filename =
let sym_of_file filename =
let result =
matrix_of_file filename
of_file filename
in
for j=1 to Mat.dim1 result do
for i=1 to j do

View File

@ -17,9 +17,12 @@ val make0 : int -> int -> ('a,'b) t
val create : int -> int -> ('a,'b) t
(** Creates an uninitialized matrix. *)
val reshape : ('a,'b) t -> int -> int -> ('c,'d) t
val reshape_inplace : int -> int -> ('a,'b) t -> ('c,'d) t
(** Changes the dimensions of the matrix *)
val reshape_vec_inplace : int -> int -> ('a*'b) Vector.t -> ('a,'b) t
(** Reshapres a vector into a matrix *)
val init_cols : int -> int -> (int -> int -> float) -> ('a,'b) t
(** Creates an uninitialized matrix. *)
@ -59,6 +62,9 @@ val mul : ('a,'b) t -> ('a,'b) t -> ('a,'b) t
val div : ('a,'b) t -> ('a,'b) t -> ('a,'b) t
(** Divides two matrices element-wise *)
val amax : ('a,'b) t -> float
(** Maximum of the absolute values of the elements of the matrix. *)
val add_inplace : c:('a,'b) t -> ('a,'b) t -> ('a,'b) t -> unit
(** [add_inplace c a b] : performs [c = a+b] in-place. *)
@ -99,6 +105,12 @@ val of_col_vecs : 'a Vector.t array -> ('a,'b) t
val of_col_vecs_list : 'a Vector.t list -> ('a,'b) t
(** Converts a list of vectors into a matrix *)
val to_array : ('a,'b) t -> float array array
(** Converts the matrix into an array of arrays *)
val of_array : float array array -> ('a,'b) t
(** Converts an array of arrays into a matrix *)
val copy: ?m:int -> ?n:int -> ?br:int -> ?bc:int -> ?ar:int -> ?ac:int -> ('a,'b) t -> ('a,'b) t
(** Copies all or part of a two-dimensional matrix A to a new matrix B *)
@ -228,7 +240,7 @@ val gemm_nn: ?m:int -> ?n:int -> ?k:int -> ?beta:float ->
(** Performs gemm with [~transa=`N] and [~transb=`N]. *)
val gemm_nt: ?m:int -> ?n:int -> ?k:int -> ?beta:float ->
?c:('a,'c) t -> ?alpha:float -> ('a,'b) t -> ('c,'b) t -> ('c,'a) t
?c:('a,'c) t -> ?alpha:float -> ('a,'b) t -> ('c,'b) t -> ('a,'c) t
(** Performs gemm with [~transa=`N] and [~transb=`T]. *)
val gemm_tn: ?m:int -> ?n:int -> ?k:int -> ?beta:float ->
@ -236,7 +248,7 @@ val gemm_tn: ?m:int -> ?n:int -> ?k:int -> ?beta:float ->
(** Performs gemm with [~transa=`T] and [~transb=`N]. *)
val gemm_tt: ?m:int -> ?n:int -> ?k:int -> ?beta:float ->
?c:('a,'c) t -> ?alpha:float -> ('b,'a) t -> ('c,'b) t -> ('c,'b) t
?c:('a,'c) t -> ?alpha:float -> ('b,'a) t -> ('c,'b) t -> ('a,'c) t
(** Performs gemm with [~transa=`T] and [~transb=`T]. *)
@ -285,13 +297,13 @@ val x_o_xt : o:('b,'b) t -> x:('a,'b) t -> ('a,'a) t
val debug_matrix: string -> ('a,'b) t -> unit
(** Prints a matrix in stdout for debug *)
val matrix_of_file : string -> ('a,'b) t
val of_file : string -> ('a,'b) t
(** Reads a matrix from a file with format "%d %d %f" corresponding to
[i, j, A.{i,j}]. *)
val relabel : ('a,'b) t -> ('c,'d) t
val sym_matrix_of_file : string -> ('a,'b) t
val sym_of_file : string -> ('a,'b) t
(** Reads a symmetric matrix from a file with format "%d %d %f" corresponding to
[i, j, A.{i,j}]. *)

View File

@ -32,6 +32,7 @@ let sub t1 t2 = Vec.sub t1 t2
let mul t1 t2 = Vec.mul t1 t2
let div t1 t2 = Vec.div t1 t2
let dot t1 t2 = dot t1 t2
let amax t = amax t
let create n = Vec.create n
let make0 n = Vec.make0 n

View File

@ -67,6 +67,9 @@ val asin : 'a t -> 'a t
val atan : 'a t -> 'a t
(** [atan t = map (f x -> atan x) t *)
val amax : 'a t -> float
(** Maximum of the absolute values of the elements of the vector. *)
val normalize : 'a t -> 'a t
(** Returns the vector normalized *)

View File

@ -41,8 +41,8 @@ let test_all () =
check (float 1.e-14) "norm" (sqrt (dot u2 u2)) (Vector.norm v2);
check (float 1.e-14) "sum" (Vec.sum u1) (Vector.sum v1);
check (float 1.e-14) "sum" (Vec.sum u2) (Vector.sum v2);
check (float 1.e-14) "at" (u1.{n/2}) (Vector.at v1 (n/2));
check (float 1.e-14) "at" (u2.{n/2}) (Vector.at v2 (n/2));
check (float 1.e-14) "at" (u1.{n/2}) (v1%.(n/2));
check (float 1.e-14) "at" (u2.{n/2}) (v2%.(n/2));
check (bool) "of_list" true (v1 = Vector.of_list @@ Array.to_list a1);
check (bool) "of_list" true (v2 = Vector.of_list @@ Array.to_list a2);
check (bool) "to_list" true (Vector.to_list v1 = Array.to_list a1);

View File

@ -1,12 +1,13 @@
open Linear_algebra
open Common.Util
open Common.Constants
(** One-electron orthogonal basis set, corresponding to Molecular Orbitals. *)
module HF = HartreeFock
module HF = Hartree_fock
module Si = Simulation
type ao = Ao.Ao_dim.t
type mo = Mo_dim.t
type mo_type =
| RHF | ROHF | UHF | CASSCF | Projected
| Natural of string
@ -16,12 +17,12 @@ type t =
{
simulation : Simulation.t; (* Simulation which produced the MOs *)
mo_type : mo_type; (* Kind of MOs (RHF, CASSCF, Localized...) *)
mo_occupation : t Vector.t; (* Occupation numbers *)
mo_coef : (Ao.Basis.t,t) Matrix.t; (* Matrix of the MO coefficients in the AO basis *)
eN_ints : (t,t) Matrix.t lazy_t; (* Electron-nucleus potential integrals *)
ee_ints : t Four_idx_storage.t lazy_t; (* Electron-electron potential integrals *)
kin_ints : (t,t) Matrix.t lazy_t; (* Kinetic energy integrals *)
one_e_ints : (t,t) Matrix.t lazy_t; (* One-electron integrals *)
mo_occupation : mo Vector.t; (* Occupation numbers *)
mo_coef : (ao,mo) Matrix.t; (* Matrix of the MO coefficients in the AO basis *)
eN_ints : (mo,mo) Matrix.t lazy_t; (* Electron-nucleus potential integrals *)
ee_ints : mo Four_idx_storage.t lazy_t; (* Electron-electron potential integrals *)
kin_ints : (mo,mo) Matrix.t lazy_t; (* Kinetic energy integrals *)
one_e_ints : (mo,mo) Matrix.t lazy_t; (* One-electron integrals *)
(* TODO
f12_ints : F12.t lazy_t; (* F12 integrals *)
*)
@ -50,16 +51,16 @@ let mo_energies t =
let m_C = mo_coef t in
let f =
let m_N = Matrix.of_diag @@ mo_occupation t in
let m_P = Matrix.x_o_xt m_N m_C in
let m_P = Matrix.x_o_xt ~o:m_N ~x:m_C in
match t.mo_type with
| RHF -> Fock.make_rhf ~density:m_P (ao_basis t)
| Projected
| ROHF -> (Matrix.scal 0.5 m_P;
| ROHF -> (Matrix.scale_inplace 0.5 m_P;
Fock.make_uhf ~density_same:m_P ~density_other:m_P (ao_basis t))
| _ -> failwith "Not implemented"
in
let m_F0 = Fock.fock f in
Matrix.xt_o_x m_F0 m_C
Matrix.xt_o_x ~o:m_F0 ~x:m_C
|> Matrix.diag
@ -86,7 +87,7 @@ let make ~simulation ~mo_type ~mo_occupation ~mo_coef () =
)
and ee_ints = lazy (
Ao.Basis.ee_ints ao_basis
|> Eri.four_index_transform mo_coef
|> Four_idx_storage.four_index_transform mo_coef
)
(*
and f12_ints = lazy (
@ -106,7 +107,7 @@ let make ~simulation ~mo_type ~mo_occupation ~mo_coef () =
let values t point =
let c = mo_coef t in
let a = Ao.Basis.values (Simulation.ao_basis t.simulation) point in
Matrix.gemv ~trans:`T c a
Matrix.gemv_t c a
let of_hartree_fock hf =
let mo_coef = HF.eigenvectors hf in
@ -114,24 +115,24 @@ let of_hartree_fock hf =
let mo_occupation = HF.occupation hf in
let mo_type =
match HF.kind hf with
| HartreeFock.RHF -> RHF
| HartreeFock.ROHF -> ROHF
| HartreeFock.UHF -> UHF
| HF.RHF -> RHF
| HF.ROHF -> ROHF
| HF.UHF -> UHF
in
make ~simulation ~mo_type ~mo_occupation ~mo_coef ()
(*
let of_mo_basis simulation other =
let mo_coef =
let basis = Simulation.ao_basis simulation in
let basis_other = ao_basis other in
let m_S =
Overlap.(matrix @@ of_basis_pair
(AOBasis.basis basis)
(AOBasis.basis basis_other) )
Ao.Overlap.(of_basis_pair
(Ao.Basis.ao_basis basis)
(Ao.Basis.ao_basis basis_other) )
in
let m_X = AOBasis.ortho basis in
let m_X = Ao.Basis.ortho basis in
(* Project other vectors in the current basis *)
let m_C =
gemm m_S @@ mo_coef other
@ -156,15 +157,15 @@ let of_mo_basis simulation other =
else 0.)
in
make ~simulation ~mo_type:Projected ~mo_occupation ~mo_coef ()
*)
let pp ?(start=1) ?(finish=0) ppf t =
let open Lacaml.Io in
let rows = Mat.dim1 t.mo_coef
and cols = Mat.dim2 t.mo_coef
let rows = Matrix.dim1 t.mo_coef
and cols = Matrix.dim2 t.mo_coef
in
let finish =
match finish with
@ -182,7 +183,7 @@ let pp ?(start=1) ?(finish=0) ppf t =
Array.iteri (fun i x ->
if (i+1 >= first) && (i+1 <= first+4 ) then
Format.fprintf ppf "%12f@ " x)
(Vec.to_array @@ mo_energies t);
(Vector.to_array @@ mo_energies t);
Format.fprintf ppf "@]@;";
Format.fprintf ppf "@[%a@]"
@ -193,7 +194,8 @@ let pp ?(start=1) ?(finish=0) ppf t =
(Array.init (min 5 (cols-first+1)) (fun i -> Printf.sprintf "-- %d --" (i + first) ))
~print_right:false
~print_foot:false
() ) (lacpy ~ac:first ~n:(min 5 (cols-first+1)) (t.mo_coef)) ;
() ) (Matrix.to_bigarray_inplace t.mo_coef
|> Lacaml.D.lacpy ~ac:first ~n:(min 5 (cols-first+1)) ) ;
Format.fprintf ppf "@]@;@;@]";
(aux [@tailcall]) (first+5)
end

View File

@ -13,6 +13,8 @@ type mo_type =
| Localized of string
type t
type mo = Mo_dim.t
type ao = Ao.Ao_dim.t
(** {1 Accessors} *)
@ -25,25 +27,25 @@ val mo_type : t -> mo_type
val ao_basis : t -> Ao.Basis.t
(** Matrix of the MO coefficients in the AO basis *)
val mo_occupation : t -> t Vector.t
val mo_occupation : t -> mo Vector.t
(** Occupation numbers *)
val mo_coef : t -> (Ao.Basis.t, t) Matrix.t
val mo_coef : t -> (ao, mo) Matrix.t
(** Molecular orbitcal coefficients *)
val eN_ints : t -> (t,t) Matrix.t
val eN_ints : t -> (mo,mo) Matrix.t
(** Electron-nucleus potential integrals *)
val ee_ints : t -> t Four_idx_storage.t
val ee_ints : t -> mo Four_idx_storage.t
(** Electron-electron repulsion integrals *)
val kin_ints : t -> (t,t) Matrix.t
val kin_ints : t -> (mo,mo) Matrix.t
(** Kinetic energy integrals *)
val one_e_ints : t -> (t,t) Matrix.t
val one_e_ints : t -> (mo,mo) Matrix.t
(** One-electron integrals {% $\hat{T} + V$ %} *)
val two_e_ints : t -> t Four_idx_storage.t
val two_e_ints : t -> mo Four_idx_storage.t
(** Electron-electron repulsion integrals *)
(* TODO
@ -54,39 +56,38 @@ val f12_ints : t -> F12.t
val size : t -> int
(** Number of molecular orbitals in the basis *)
val mo_energies : t -> t Vector.t
val mo_energies : t -> mo Vector.t
(** Fock MO energies *)
val values : t -> Coordinate.t -> t Vector.t
val values : t -> Coordinate.t -> mo Vector.t
(** Values of the MOs evaluated at a given coordinate. *)
(** {1 Creators} *)
val make : simulation:Simulation.t ->
mo_type:mo_type ->
mo_occupation:t Vector.t ->
mo_coef:(Ao.Basis.t,t) Matrix.t ->
mo_occupation:mo Vector.t ->
mo_coef:(ao,mo) Matrix.t ->
unit -> t
(** Function to build a data structure representing the molecular orbitals. *)
val of_hartree_fock : HartreeFock.t -> t
val of_hartree_fock : Hartree_fock.t -> t
(** Build MOs from a Restricted Hartree-Fock calculation. *)
(*
val of_mo_basis : Simulation.t -> t -> t
(** Project the MOs of the other basis on the current one. *)
*)
val mo_matrix_of_ao_matrix :
mo_coef:(Ao.Basis.t,t) Matrix.t ->
(Ao.Basis.t,Ao.Basis.t) Matrix.t ->
(t,t) Matrix.t
mo_coef:(ao,mo) Matrix.t ->
(ao,ao) Matrix.t -> (mo,mo) Matrix.t
(** Build a matrix in MO basis from a matrix in AO basis. *)
val ao_matrix_of_mo_matrix :
mo_coef:(Ao.Basis.t,t) Matrix.t ->
ao_overlap:(Ao.Basis.t,Ao.Basis.t) Matrix.t ->
(t,t) Matrix.t ->
(Ao.Basis.t,Ao.Basis.t) Matrix.t
mo_coef:(ao,mo) Matrix.t -> ao_overlap:(ao,ao) Matrix.t ->
(mo,mo) Matrix.t -> (ao,ao) Matrix.t
(** Build a matrix in AO basis from a matrix in MO basis. *)
(** {1 Printers} *)

View File

@ -1,4 +1,5 @@
open Particles
open Common
type mo_class =
| Core of int (* Always doubly occupied *)

240
mo/lib/fock.ml Normal file
View File

@ -0,0 +1,240 @@
open Linear_algebra
open Common
type ao = Ao.Ao_dim.t
type t =
{
fock : (ao,ao) Matrix.t ;
core : (ao,ao) Matrix.t ;
coulomb : (ao,ao) Matrix.t ;
exchange : (ao,ao) Matrix.t ;
}
let fock t = t.fock
let core t = t.core
let coulomb t = t.coulomb
let exchange t = t.exchange
let make_rhf ~density ?(threshold=Constants.epsilon) ao_basis =
let m_P = density
and m_T = Ao.Basis.kin_ints ao_basis
and m_V = Ao.Basis.eN_ints ao_basis
and m_G = Ao.Basis.ee_ints ao_basis
in
let nBas = Matrix.dim1 m_T
in
let m_Hc = Matrix.add m_T m_V
and m_J = Array.make_matrix nBas nBas 0.
and m_K = Array.make_matrix nBas nBas 0.
in
for sigma = 1 to nBas do
let m_Ksigma = m_K.(sigma-1) in
for nu = 1 to nBas do
let m_Jnu = m_J.(nu-1) in
for lambda = 1 to nBas do
let pJ = m_P%:(lambda,sigma)
and pK = 0.5 *. (m_P%:(lambda,nu))
in
match (abs_float pJ > threshold , abs_float pK > threshold, nu < sigma) with
| (false, false, _) -> ()
| (true , true , true) ->
begin
for mu = 1 to nu do
let integral =
Four_idx_storage.get_phys m_G mu lambda nu sigma
in
if (integral <> 0.) then begin
m_Jnu.(mu-1) <- m_Jnu.(mu-1) +. pJ *. integral;
m_Ksigma.(mu-1) <- m_Ksigma.(mu-1) +. pK *. integral
end
done;
for mu = nu+1 to sigma do
m_Ksigma.(mu-1) <- m_Ksigma.(mu-1) +.
pK *. Four_idx_storage.get_phys m_G mu lambda nu sigma
done
end
| (true , true , false) ->
begin
for mu = 1 to sigma do
let integral =
Four_idx_storage.get_phys m_G mu lambda nu sigma
in
if (integral <> 0.) then begin
m_Jnu.(mu-1) <- m_Jnu.(mu-1) +. pJ *. integral;
m_Ksigma.(mu-1) <- m_Ksigma.(mu-1) +. pK *. integral
end
done;
for mu = sigma+1 to nu do
m_Jnu.(mu-1) <-
m_Jnu.(mu-1) +. pJ *. Four_idx_storage.get_phys m_G mu lambda nu sigma
done
end
| (false, true , _) ->
for mu = 1 to sigma do
m_Ksigma.(mu-1) <-
m_Ksigma.(mu-1) +. pK *. Four_idx_storage.get_phys m_G mu lambda nu sigma
done
| (true , false, _) ->
for mu = 1 to nu do
m_Jnu.(mu-1) <-
m_Jnu.(mu-1) +. pJ *. Four_idx_storage.get_phys m_G mu lambda nu sigma
done
done
done;
for mu = 1 to sigma-1 do
m_K.(mu-1).(sigma-1) <- m_Ksigma.(mu-1);
done
done;
for nu = 1 to nBas do
let m_Jnu = m_J.(nu-1) in
for mu = 1 to nu-1 do
m_J.(mu-1).(nu-1) <- m_Jnu.(mu-1)
done
done;
let m_J = Matrix.of_array m_J
and m_K = Matrix.of_array m_K
in
{ fock = Matrix.add m_Hc (Matrix.sub m_J m_K) ;
core = m_Hc ; coulomb = m_J ; exchange = m_K }
let make_uhf ~density_same ~density_other ?(threshold=Constants.epsilon) ao_basis =
let m_P_a = density_same
and m_P_b = density_other
and m_T = Ao.Basis.kin_ints ao_basis
and m_V = Ao.Basis.eN_ints ao_basis
and m_G = Ao.Basis.ee_ints ao_basis
in
let nBas = Matrix.dim1 m_T
in
let m_Hc = Matrix.add m_T m_V
and m_J = Array.make_matrix nBas nBas 0.
and m_K = Array.make_matrix nBas nBas 0.
in
for sigma = 1 to nBas do
let m_Ksigma = m_K.(sigma-1) in
for nu = 1 to nBas do
let m_Jnu = m_J.(nu-1) in
for lambda = 1 to nBas do
let pJ = m_P_a%:(lambda,sigma) +. m_P_b%:(lambda,sigma)
and pK = m_P_a%:(lambda,nu)
in
match (abs_float pJ > threshold , abs_float pK > threshold, nu < sigma) with
| (false, false, _) -> ()
| (true , true , true) ->
begin
for mu = 1 to nu do
let integral =
Four_idx_storage.get_phys m_G mu lambda nu sigma
in
if (integral <> 0.) then begin
m_Jnu.(mu-1) <- m_Jnu.(mu-1) +. pJ *. integral;
m_Ksigma.(mu-1) <- m_Ksigma.(mu-1) +. pK *. integral
end
done;
for mu = nu+1 to sigma do
m_Ksigma.(mu-1) <- m_Ksigma.(mu-1) +.
pK *.Four_idx_storage.get_phys m_G mu lambda nu sigma
done
end
| (true , true , false) ->
begin
for mu = 1 to sigma do
let integral =
Four_idx_storage.get_phys m_G mu lambda nu sigma
in
if (integral <> 0.) then begin
m_Jnu.(mu-1) <- m_Jnu.(mu-1) +. pJ *. integral;
m_Ksigma.(mu-1) <- m_Ksigma.(mu-1) +. pK *. integral
end
done;
for mu = sigma+1 to nu do
m_Jnu.(mu-1) <-
m_Jnu.(mu-1) +. pJ *. Four_idx_storage.get_phys m_G mu lambda nu sigma
done
end
| (false, true , _) ->
for mu = 1 to sigma do
m_Ksigma.(mu-1) <-
m_Ksigma.(mu-1) +. pK *. Four_idx_storage.get_phys m_G mu lambda nu sigma
done
| (true , false, _) ->
for mu = 1 to nu do
m_Jnu.(mu-1) <-
m_Jnu.(mu-1) +. pJ *. Four_idx_storage.get_phys m_G mu lambda nu sigma
done
done
done;
for mu = 1 to sigma-1 do
m_K.(mu-1).(sigma-1) <- m_Ksigma.(mu-1);
done
done;
for nu = 1 to nBas do
let m_Jnu = m_J.(nu-1) in
for mu = 1 to nu-1 do
m_J.(mu-1).(nu-1) <- m_Jnu.(mu-1)
done
done;
let m_J = Matrix.of_array m_J
and m_K = Matrix.of_array m_K
in
{ fock = Matrix.add m_Hc (Matrix.sub m_J m_K) ;
core = m_Hc ; coulomb = m_J ; exchange = m_K }
let op ~f f1 f2 =
assert (f1.core = f2.core);
let m_Hc = f1.core
and m_J = f f1.coulomb f2.coulomb
and m_K = f f1.exchange f2.exchange
in
{
fock = Matrix.add m_Hc (Matrix.sub m_J m_K);
core = m_Hc;
coulomb = m_J;
exchange = m_K;
}
let add = op ~f:(fun a b -> Matrix.add a b)
let sub = op ~f:(fun a b -> Matrix.sub a b)
let scale alpha f1 =
let m_Hc = f1.core
and m_J = Matrix.copy f1.coulomb
and m_K = Matrix.copy f1.exchange
in
Matrix.scale_inplace alpha m_J;
Matrix.scale_inplace alpha m_K;
{
fock = Matrix.add m_Hc (Matrix.sub m_J m_K);
core = m_Hc;
coulomb = m_J;
exchange = m_K;
}
let pp ppf a =
Format.fprintf ppf "@[<2>";
Format.fprintf ppf "@[ Fock matrix:@[<2>@[%a@]@.]@]" Matrix.pp a.fock;
Format.fprintf ppf "@[ Core Hamiltonian:@[<2>@[%a@]@.]@]" Matrix.pp a.core;
Format.fprintf ppf "@[ Coulomb matrix:@[<2>@[%a@]@.]@]" Matrix.pp a.coulomb;
Format.fprintf ppf "@[ Exchange matrix:@[<2>@[%a@]@.]@]" Matrix.pp a.exchange;
Format.fprintf ppf "@]"

54
mo/lib/fock.mli Normal file
View File

@ -0,0 +1,54 @@
(** Type for the Fock operator in AO basis. *)
open Linear_algebra
type t
type ao = Ao.Ao_dim.t
(** {1 Accessors} *)
val fock : t -> (ao,ao) Matrix.t
(** Fock matrix in AO basis *)
val core : t -> (ao,ao) Matrix.t
(** Core Hamiltonian : {% $\langle i | \hat{h} | j \rangle$ %} *)
val coulomb : t -> (ao,ao) Matrix.t
(** Coulomb matrix : {% $\langle i | J | j \rangle$ %} *)
val exchange : t -> (ao,ao) Matrix.t
(** Exchange matrix : {% $\langle i | K | j \rangle$ %} *)
(** {1 Creators} *)
val make_rhf : density:(ao,ao) Matrix.t -> ?threshold:float -> Ao.Basis.t -> t
(** Create a Fock operator in the RHF formalism. Expected density is
{% $2 \mathbf{C\, C}^\dagger$ %}. [threshold] is a threshold on the
integrals. *)
val make_uhf :
density_same:(ao,ao) Matrix.t ->
density_other:(ao,ao) Matrix.t ->
?threshold:float ->
Ao.Basis.t -> t
(** Create a Fock operator in the UHF formalism. Expected density is
{% $\mathbf{C\, C}^\dagger$ %}. When building the {% $\alpha$ %} Fock
operator, [density_same] is the {% $\alpha$ %} density and [density_other]
is the {% $\beta$ %} density. [threshold] is a threshold on the integrals. *)
(** {1 Operations} *)
val add : t -> t -> t
(** Add two Fock operators sharing the same core Hamiltonian. *)
val sub : t -> t -> t
(** Subtract two Fock operators sharing the same core Hamiltonian. *)
val scale : float -> t -> t
(** Scale the Fock matrix by a constant *)
(** {1 Printers} *)
val pp : Format.formatter -> t -> unit

56
mo/lib/guess.ml Normal file
View File

@ -0,0 +1,56 @@
open Linear_algebra
type ao = Ao.Ao_dim.t
type mo = Mo_dim.t
type guess =
| Hcore of (ao,ao) Matrix.t
| Huckel of (ao,ao) Matrix.t
| Matrix of (ao,mo) Matrix.t
type t = guess
module El = Particles.Electrons
let hcore_guess ao_basis =
let eN_ints = Ao.Basis.eN_ints ao_basis
and kin_ints = Ao.Basis.kin_ints ao_basis
in
Matrix.add eN_ints kin_ints
let huckel_guess ao_basis =
let c = 0.5 *. 1.75 in
let eN_ints = Ao.Basis.eN_ints ao_basis
and kin_ints = Ao.Basis.kin_ints ao_basis
in
let m_F =
Matrix.add eN_ints kin_ints
in
let ao_num = Ao.Basis.size ao_basis
and overlap = Ao.Basis.overlap ao_basis
in
let diag = Vector.init ao_num (fun i -> m_F%:(i,i) ) in
function
| 0 -> invalid_arg "Huckel guess needs a non-zero number of occupied MOs."
| _nocc ->
Matrix.init_cols ao_num ao_num (fun i j ->
if (i<>j) then
if (diag%.(i) +. diag%.(j)) < 0. then
c *. (overlap%:(i,j)) *. (diag%.(i) +. diag%.(j)) +. m_F%:(i,j) (*TODO Pseudo *)
else
m_F%:(i,j) (*TODO Pseudo *)
else
diag%.(i)
)
let make ?(nocc=0) ~guess ao_basis =
match guess with
| `Hcore -> Hcore (hcore_guess ao_basis)
| `Huckel -> Huckel (huckel_guess ao_basis nocc)
| `Matrix m -> Matrix m

20
mo/lib/guess.mli Normal file
View File

@ -0,0 +1,20 @@
open Linear_algebra
(** Guess for Hartree-Fock calculations. *)
type ao = Ao.Ao_dim.t
type mo = Mo_dim.t
type guess =
| Hcore of (ao,ao) Matrix.t (* Core Hamiltonian Matrix *)
| Huckel of (ao,ao) Matrix.t (* Huckel Hamiltonian Matrix *)
| Matrix of (ao,mo) Matrix.t (* Guess Eigenvectors *)
type t = guess
val make :
?nocc:int ->
guess:[ `Hcore | `Huckel | `Matrix of (ao,mo) Matrix.t ] ->
Ao.Basis.t -> t

721
mo/lib/hartree_fock.ml Normal file
View File

@ -0,0 +1,721 @@
open Linear_algebra
open Particles
open Common
type ao = Ao.Ao_dim.t
type mo = Mo_dim.t
type hartree_fock_data =
{
iteration : int ;
coefficients : (ao, mo) Matrix.t option ;
eigenvalues : mo Vector.t option ;
error : float option ;
diis : (mo*mo) Diis.t option ;
energy : float option ;
density : (ao,ao) Matrix.t option ;
density_a : (ao,ao) Matrix.t option ;
density_b : (ao,ao) Matrix.t option ;
fock : Fock.t option ;
fock_a : Fock.t option ;
fock_b : Fock.t option ;
}
and hartree_fock_kind =
| RHF (** Restricted Hartree-Fock *)
| ROHF (** Restricted Open-shell Hartree-Fock *)
| UHF (** Unrestricted Hartree-Fock *)
and t =
{
kind : hartree_fock_kind;
simulation : Simulation.t;
guess : Guess.t;
data : hartree_fock_data option lazy_t array;
nocc : int ;
}
let empty =
{
iteration = 0 ;
coefficients = None ;
eigenvalues = None ;
error = None ;
diis = None ;
energy = None ;
density = None ;
density_a = None ;
density_b = None ;
fock = None ;
fock_a = None ;
fock_b = None ;
}
module Si = Simulation
module El = Electrons
let kind t = t.kind
let simulation t = t.simulation
let guess t = t.guess
let nocc t = t.nocc
let n_iterations t =
Array.fold_left (fun accu x ->
match Lazy.force x with
| Some _ -> accu + 1
| None -> accu
) 0 t.data
let last_iteration t =
Util.of_some @@ Lazy.force (t.data.(n_iterations t - 1))
let eigenvectors t =
let data = last_iteration t in
Util.of_some data.coefficients
let eigenvalues t =
let data = last_iteration t in
Util.of_some data.eigenvalues
let density t =
let data = last_iteration t in
match kind t with
| RHF -> Util.of_some data.density
| ROHF -> Matrix.add (Util.of_some data.density_a) (Util.of_some data.density_b)
| _ -> failwith "Not implemented"
let occupation t =
let n_alfa, n_beta =
El.n_alfa @@ Simulation.electrons @@ simulation t,
El.n_beta @@ Simulation.electrons @@ simulation t
in
match kind t with
| RHF -> Vector.init (Matrix.dim2 @@ eigenvectors t) (fun i ->
if i <= nocc t then 2.0 else 0.0)
| ROHF -> Vector.init (Matrix.dim2 @@ eigenvectors t) (fun i ->
if i <= n_beta then 2.0 else
if i <= n_alfa then 1.0 else
0.0)
| _ -> failwith "Not implemented"
let energy t =
let data = last_iteration t in
Util.of_some data.energy
let nuclear_repulsion t =
Si.nuclear_repulsion (simulation t)
let ao_basis t =
Si.ao_basis (simulation t)
let kin_energy t =
let m_T =
ao_basis t
|> Ao.Basis.kin_ints
in
let m_P = density t in
Matrix.gemm_trace m_P m_T
let eN_energy t =
let m_V =
ao_basis t
|> Ao.Basis.eN_ints
in
let m_P = density t in
Matrix.gemm_trace m_P m_V
let coulomb_energy t =
let data =
last_iteration t
in
match kind t with
| RHF -> let m_P = Util.of_some data.density in
let fock = Util.of_some data.fock in
let m_J = Fock.coulomb fock in
0.5 *. Matrix.gemm_trace m_P m_J
| ROHF -> let m_P_a = Util.of_some data.density_a in
let m_P_b = Util.of_some data.density_b in
let fock_a = Util.of_some data.fock_a in
let fock_b = Util.of_some data.fock_b in
let m_J_a = Fock.coulomb fock_a in
let m_J_b = Fock.coulomb fock_b in
0.5 *. ( (Matrix.gemm_trace m_P_a m_J_a) +. (Matrix.gemm_trace m_P_b m_J_b) )
| _ -> failwith "Not implemented"
let exchange_energy t =
let data =
last_iteration t
in
match kind t with
| RHF -> let m_P = Util.of_some data.density in
let fock = Util.of_some data.fock in
let m_K = Fock.exchange fock in
-. 0.5 *. Matrix.gemm_trace m_P m_K
| ROHF -> let m_P_a = Util.of_some data.density_a in
let m_P_b = Util.of_some data.density_b in
let fock_a = Util.of_some data.fock_a in
let fock_b = Util.of_some data.fock_b in
let m_K_a = Fock.exchange fock_a in
let m_K_b = Fock.exchange fock_b in
-. 0.5 *. ( (Matrix.gemm_trace m_P_a m_K_a) +. (Matrix.gemm_trace m_P_b m_K_b) )
| _ -> failwith "Not implemented"
let make
?kind
?guess:(guess=`Huckel)
?max_scf:(max_scf=64)
?level_shift:(level_shift=0.2)
?threshold_SCF:(threshold_SCF=1.e-8)
simulation =
(* Number of occupied MOs *)
let n_alfa, n_beta =
El.n_alfa @@ Si.electrons simulation,
El.n_beta @@ Si.electrons simulation
in
let nocc = n_alfa in
let kind =
match kind with
| Some kind -> kind
| None -> if (n_alfa = n_beta) then RHF else ROHF
in
let nuclear_repulsion =
Si.nuclear_repulsion simulation
in
let ao_basis =
Si.ao_basis simulation
in
(* Orthogonalization matrix *)
let m_X =
Ao.Basis.ortho ao_basis
in
(* Overlap matrix *)
let m_S =
Ao.Basis.overlap ao_basis
in
(* Level shift in MO basis *)
let m_LSmo =
Array.init (Matrix.dim2 m_X) (fun i ->
if i > nocc then level_shift else 0.)
|> Vector.of_array
|> Matrix.of_diag
in
(* Guess coefficients *)
let guess =
Guess.make ~nocc ~guess ao_basis
in
let m_C : (ao,mo) Matrix.t =
let c_of_h m_H =
let m_Hmo = Matrix.xt_o_x ~o:m_H ~x:m_X in
let m_C', _ = Matrix.diagonalize_symm m_Hmo in
Matrix.gemm_nn m_X m_C'
in
match guess with
| Guess.Hcore m_H -> c_of_h m_H
| Guess.Huckel m_H -> c_of_h m_H
| Guess.Matrix m_C -> m_C
in
(* A single SCF iteration *)
let scf_iteration_rhf data =
let nSCF = data.iteration + 1
and m_C = Util.of_some data.coefficients
and m_P_prev = data.density
and fock_prev = data.fock
and diis =
match data.diis with
| Some diis -> diis
| None -> Diis.make ()
and threshold =
match data.error with
| Some error -> error
| None -> threshold_SCF *. 2.
in
(* Density matrix over nocc occupied MOs *)
let m_P =
Matrix.gemm_nt ~alpha:2. ~k:nocc m_C m_C
in
(* Fock matrix in AO basis *)
let fock =
match fock_prev, m_P_prev, threshold > 100. *. threshold_SCF with
| Some fock_prev, Some m_P_prev, true ->
let threshold = 1.e-8 in
Fock.make_rhf ~density:(Matrix.sub m_P m_P_prev) ~threshold ao_basis
|> Fock.add fock_prev
| _ -> Fock.make_rhf ~density:m_P ao_basis
in
let m_F0, m_Hc, _, _ =
let x = fock in
Fock.(fock x, core x, coulomb x, exchange x)
in
(* Add level shift in AO basis *)
let m_F =
let m_SC =
Matrix.gemm_nn m_S m_C
in
Matrix.gemm_nn m_SC (Matrix.gemm_nt m_LSmo m_SC)
|> Matrix.add m_F0
in
(* Fock matrix in orthogonal basis *)
let m_F_ortho =
Matrix.xt_o_x ~o:m_F ~x:m_X
in
let error_fock =
let fps =
Matrix.gemm_nn m_F (Matrix.gemm_nn m_P m_S)
and spf =
Matrix.gemm_nn m_S (Matrix.gemm_nn m_P m_F)
in
Matrix.xt_o_x ~o:(Matrix.sub fps spf) ~x:m_X
in
let diis, m_F_diis =
let diis =
Diis.append
~p:(Matrix.as_vec_inplace m_F_ortho)
~e:(Matrix.as_vec_inplace error_fock) diis
in
try
let m_F_diis =
Diis.next diis
|> Matrix.reshape_vec_inplace (Matrix.dim1 m_F_ortho) (Matrix.dim2 m_F_ortho)
in
diis, m_F_diis
with Failure _ -> (* Failure in DIIS.next *)
Diis.make (), m_F_ortho
in
let diis =
Diis.append
~p:(Matrix.as_vec_inplace m_F_ortho)
~e:(Matrix.as_vec_inplace error_fock) diis
in
(* MOs in orthogonal MO basis *)
let m_C', _ =
Matrix.diagonalize_symm m_F_diis
in
(* Re-compute eigenvalues to remove level-shift *)
let eigenvalues =
let m_F_ortho =
Matrix.xt_o_x ~o:m_F0 ~x:m_X
in
Matrix.xt_o_x ~o:m_F_ortho ~x:m_C'
|> Matrix.diag
in
(* MOs in AO basis *)
let m_C =
Matrix.gemm_nn m_X m_C'
|> Conventions.rephase
in
(* Hartree-Fock energy *)
let energy =
nuclear_repulsion +. 0.5 *.
Matrix.gemm_trace m_P (Matrix.add m_Hc m_F)
in
(* Convergence criterion *)
let error =
error_fock
|> Matrix.amax
|> abs_float
in
{ empty with
iteration = nSCF ;
eigenvalues = Some eigenvalues ;
coefficients = Some m_C ;
error = Some error ;
diis = Some diis ;
energy = Some energy ;
density = Some m_P ;
fock = Some fock ;
}
in
let scf_iteration_rohf data =
let nSCF = data.iteration + 1
and m_C = Util.of_some data.coefficients
and m_P_a_prev = data.density_a
and m_P_b_prev = data.density_b
and fock_a_prev = data.fock_a
and fock_b_prev = data.fock_b
and diis =
match data.diis with
| Some diis -> diis
| None -> Diis.make ()
and threshold =
match data.error with
| Some error -> error
| None -> threshold_SCF *. 2.
in
(* Density matrix *)
let m_P_a =
Matrix.gemm_nt ~alpha:1. ~k:n_alfa m_C m_C
in
let m_P_b =
Matrix.gemm_nt ~alpha:1. ~k:n_beta m_C m_C
in
let m_P =
Matrix.add m_P_a m_P_b
in
(* Fock matrix in AO basis *)
let fock_a =
match fock_a_prev, threshold > 100. *. threshold_SCF with
| Some fock_a_prev, true ->
let threshold = 1.e-8 in
Fock.make_uhf ~density_same:(Matrix.sub m_P_a @@ Util.of_some m_P_a_prev) ~density_other:(Matrix.sub m_P_b @@ Util.of_some m_P_b_prev) ~threshold ao_basis
|> Fock.add fock_a_prev
| _ -> Fock.make_uhf ~density_same:m_P_a ~density_other:m_P_b ao_basis
in
let fock_b =
match fock_b_prev, threshold > 100. *. threshold_SCF with
| Some fock_b_prev, true ->
let threshold = 1.e-8 in
Fock.make_uhf ~density_same:(Matrix.sub m_P_b @@ Util.of_some m_P_b_prev) ~density_other:(Matrix.sub m_P_a @@ Util.of_some m_P_a_prev) ~threshold ao_basis
|> Fock.add fock_b_prev
| _ -> Fock.make_uhf ~density_same:m_P_b ~density_other:m_P_a ao_basis
in
let m_F_a, m_Hc_a, _, _ =
let x = fock_a in
Fock.(fock x, core x, coulomb x, exchange x)
in
let m_F_b, m_Hc_b, _, _ =
let x = fock_b in
Fock.(fock x, core x, coulomb x, exchange x)
in
let m_F_mo_a =
Matrix.xt_o_x ~o:m_F_a ~x:m_C
in
let m_F_mo_b =
Matrix.xt_o_x ~o:m_F_b ~x:m_C
in
let m_F_mo =
let space k =
if k <= n_beta then
`Core
else if k <= n_alfa then
`Active
else
`Virtual
in
Array.init (Matrix.dim2 m_F_mo_a) (fun i ->
let i = i+1 in
Array.init (Matrix.dim1 m_F_mo_a) (fun j ->
let j = j+1 in
match (space i), (space j) with
| `Core , `Core ->
0.5 *. (m_F_mo_a%:(i,j) +. m_F_mo_b%:(i,j)) -.
(m_F_mo_b%:(i,j) -. m_F_mo_a%:(i,j))
| `Active , `Core
| `Core , `Active ->
m_F_mo_b%:(i,j)
| `Core , `Virtual
| `Virtual , `Core
| `Active , `Active ->
0.5 *. (m_F_mo_a%:(i,j) +. m_F_mo_b%:(i,j))
| `Virtual , `Active
| `Active , `Virtual ->
m_F_mo_a%:(i,j)
| `Virtual , `Virtual ->
0.5 *. (m_F_mo_a%:(i,j) +. m_F_mo_b%:(i,j)) +.
(m_F_mo_b%:(i,j) -. m_F_mo_a%:(i,j))
) )
|> Matrix.of_array
in
let m_SC =
Matrix.gemm_nn m_S m_C
in
let m_F0 =
Matrix.x_o_xt ~x:m_SC ~o:m_F_mo
in
(* Add level shift in AO basis *)
let m_F =
Matrix.x_o_xt ~x:m_SC ~o:m_LSmo
|> Matrix.add m_F0
in
(* Fock matrix in orthogonal basis *)
let m_F_ortho =
Matrix.xt_o_x ~o:m_F ~x:m_X
in
let error_fock =
let fps =
Matrix.gemm_nn m_F (Matrix.gemm_nn m_P m_S)
and spf =
Matrix.gemm_nn m_S (Matrix.gemm_nn m_P m_F)
in
Matrix.xt_o_x ~o:(Matrix.sub fps spf) ~x:m_X
in
let diis, m_F_diis =
let diis =
Diis.append
~p:(Matrix.as_vec_inplace m_F_ortho)
~e:(Matrix.as_vec_inplace error_fock) diis
in
try
let m_F_diis =
Diis.next diis
|> Matrix.reshape_vec_inplace (Matrix.dim1 m_F_ortho) (Matrix.dim2 m_F_ortho)
in
diis, m_F_diis
with Failure _ -> (* Failure in DIIS.next *)
Diis.make (), m_F_ortho
in
(* MOs in orthogonal MO basis *)
let m_C', _ =
Matrix.diagonalize_symm m_F_diis
in
(* Re-compute eigenvalues to remove level-shift *)
let eigenvalues =
let m_F_ortho =
Matrix.xt_o_x ~o:m_F0 ~x:m_X
in
Matrix.xt_o_x ~o:m_F_ortho ~x:m_C'
|> Matrix.diag
in
(* MOs in AO basis *)
let m_C =
Matrix.gemm_nn m_X m_C'
|> Conventions.rephase
in
(* Hartree-Fock energy *)
let energy =
nuclear_repulsion +. 0.5 *. ( Matrix.gemm_trace m_P_a (Matrix.add m_Hc_a m_F_a) +.
Matrix.gemm_trace m_P_b (Matrix.add m_Hc_b m_F_b) )
in
(* Convergence criterion *)
let error =
error_fock
|> Matrix.amax
|> abs_float
in
{ empty with
iteration = nSCF ;
eigenvalues = Some eigenvalues ;
coefficients = Some m_C ;
error = Some error ;
diis = Some diis ;
energy = Some energy ;
density_a = Some m_P_a ;
density_b = Some m_P_b ;
fock_a = Some fock_a ;
fock_b = Some fock_b ;
}
in
let scf_iteration data =
match kind with
| RHF -> scf_iteration_rhf data
| ROHF -> scf_iteration_rohf data
| _ -> failwith "Not implemented"
in
let array_data =
let storage =
Array.make max_scf None
in
let rec iteration = function
| 0 -> Some (scf_iteration { empty with coefficients = Some m_C })
| n -> begin
match storage.(n) with
| Some result -> Some result
| None ->
begin
let data = iteration (n-1) in
match data with
| None -> None
| Some data ->
begin
(* Check convergence *)
let converged, _error =
match data.error with
| None -> false, 0.
| Some error -> (data.iteration = max_scf || error < threshold_SCF), error
in
if converged then
None
else
begin
storage.(n-1) <- Some { empty with
iteration = data.iteration;
energy = data.energy ;
eigenvalues = data.eigenvalues ;
error = data.error ;
};
storage.(n) <- Some (scf_iteration data);
storage.(n);
end
end
end
end
in
Array.init max_scf (fun i -> lazy (iteration i))
in
{
kind;
simulation;
guess ;
data = array_data;
nocc;
}
let linewidth = 60
let pp_iterations ppf t =
let line = (String.make linewidth '-') in
Format.fprintf ppf "@[%4s%s@]@." "" line;
Format.fprintf ppf "@[%4s@[%5s@]@,@[%16s@]@,@[%16s@]@,@[%11s@]@]@."
"" "#" "HF energy " "Convergence" "HOMO-LUMO";
Format.fprintf ppf "@[%4s%s@]@." "" line;
let nocc = nocc t in
Array.iter (fun data ->
let data = Lazy.force data in
match data with
| None -> ()
| Some data ->
let e = Util.of_some data.eigenvalues in
let gap = e%.(nocc+1) -. e%.(nocc) in
begin
Format.fprintf ppf "@[%4s@[%5d@]@,@[%16.8f@]@,@[%16.4e@]@,@[%11.4f@]@]@." ""
(data.iteration) (Util.of_some data.energy) (Util.of_some data.error) gap;
end
) t.data;
Format.fprintf ppf "@[%4s%s@]@." "" line
let pp_summary ppf t =
let print text value =
Format.fprintf ppf "@[@[%30s@]@,@[%16.10f@]@]@;" text value;
and line () =
Format.fprintf ppf "@[ %s @]@;" (String.make (linewidth-4) '-');
in
let ha_to_ev = Constants.ha_to_ev in
let e = eigenvalues t in
Format.fprintf ppf "@[%s@]@;" (String.make linewidth '=')
; Format.fprintf ppf "@[<v>"
; print "One-electron energy" (kin_energy t +. eN_energy t)
; print "Kinetic" (kin_energy t)
; print "Potential" (eN_energy t)
; line ()
; print "Two-electron energy" (coulomb_energy t +. exchange_energy t)
; print "Coulomb" (coulomb_energy t)
; print "Exchange" (exchange_energy t)
; line ()
; print "HF HOMO" (ha_to_ev *. (e%.(nocc t)))
; print "HF LUMO" (ha_to_ev *. (e%.(nocc t + 1)))
; print "HF LUMO-LUMO" (ha_to_ev *. (e%.(nocc t + 1) -. e%.(nocc t)))
; line ()
; print "Electronic energy" (energy t -. nuclear_repulsion t)
; print "Nuclear repulsion" (nuclear_repulsion t)
; print "Hartree-Fock energy" (energy t)
; Format.fprintf ppf "@]"
; Format.fprintf ppf "@[%s@]@;" (String.make linewidth '=')
let pp ppf t =
Format.fprintf ppf "@.@[%s@]@." (String.make 70 '=');
Format.fprintf ppf "@[%34s %-34s@]@." (match t.kind with
| UHF -> "Unrestricted"
| RHF -> "Restricted"
| ROHF -> "Restricted Open-shell") "Hartree-Fock";
Format.fprintf ppf "@[%s@]@.@." (String.make 70 '=');
Format.fprintf ppf "@[%a@]@." pp_iterations t;
Format.fprintf ppf "@[<v 4>@;%a@]@." pp_summary t

75
mo/lib/hartree_fock.mli Normal file
View File

@ -0,0 +1,75 @@
open Linear_algebra
(** Data structure representing the output of a Hartree-Fock caculation *)
type hartree_fock_data
type hartree_fock_kind =
| RHF (** Restricted Hartree-Fock *)
| ROHF (** Restricted Open-shell Hartree-Fock *)
| UHF (** Unrestricted Hartree-Fock *)
type t
type mo = Mo_dim.t
type ao = Ao.Ao_dim.t
val kind : t -> hartree_fock_kind
(** Kind of simulation : RHF, ROHF or UHF. *)
val simulation : t -> Simulation.t
(** Simulation which was used for HF calculation *)
val guess : t -> Guess.t
(** Initial guess *)
val eigenvectors : t -> (ao, mo) Matrix.t
(** Final eigenvectors *)
val eigenvalues : t -> mo Vector.t
(** Final eigenvalues *)
val occupation : t -> mo Vector.t
(** Diagonal of the density matrix *)
val energy : t -> float
(** Final energy *)
val nuclear_repulsion : t -> float
(** Nucleus-Nucleus potential energy *)
val kin_energy : t -> float
(** Kinetic energy *)
val eN_energy : t -> float
(** Electron-nucleus potential energy *)
val coulomb_energy : t -> float
(** Electron-Electron potential energy *)
val exchange_energy : t -> float
(** Exchange energy *)
val nocc : t -> int
(** Number of occupied MOs *)
val empty: hartree_fock_data
(** Empty data *)
val make :
?kind:hartree_fock_kind ->
?guess:[ `Hcore | `Huckel | `Matrix of (ao,mo) Matrix.t ] ->
?max_scf:int ->
?level_shift:float -> ?threshold_SCF:float ->
Simulation.t -> t
(** {1 Printers} *)
val pp : Format.formatter -> t -> unit
val pp_iterations : Format.formatter -> t -> unit
val pp_summary : Format.formatter -> t -> unit

1
mo/lib/mo_dim.ml Normal file
View File

@ -0,0 +1 @@
type t

1
mo/lib/mo_dim.mli Normal file
View File

@ -0,0 +1 @@
type t

12
mo/test/dune Normal file
View File

@ -0,0 +1,12 @@
(library
(name test_mo_basis)
(libraries
alcotest
qcaml.mo
)
(synopsis "Tests for the MO basis"))

50
mo/test/guess.ml Normal file
View File

@ -0,0 +1,50 @@
open Alcotest
open Particles
open Operators
open Mo.Guess
open Linear_algebra
let wd = Common.Qcaml.root ^ Filename.dir_sep ^ "test"
let test_case ao_basis =
let test_hcore () =
match make ~guess:`Hcore ao_basis with
| Hcore matrix ->
let a = Matrix.to_array matrix in
let reference =
Matrix.add
(Ao.Basis.eN_ints ao_basis)
(Ao.Basis.kin_ints ao_basis)
|> Matrix.to_array
in
Array.iteri (fun i x ->
let message =
Printf.sprintf "Guess line %d" (i)
in
check (array (float 1.e-15)) message a.(i) x) reference
| _ -> assert false
in
[
"HCore", `Quick, test_hcore;
]
let tests =
List.concat [
let nuclei =
wd ^ Filename.dir_sep ^ "water.xyz"
|> Nuclei.of_xyz_file
in
let basis_filename =
wd ^ Filename.dir_sep ^ "cc-pvdz"
in
let rs = 0.5 in
let operators = [ Operator.of_range_separation rs ] in
let ao_basis =
Ao.Basis.of_nuclei_and_basis_filename ~kind:`Gaussian
~operators ~cartesian:false ~nuclei basis_filename
in
test_case ao_basis ;
]

View File

@ -8,6 +8,7 @@
test_gaussian_basis
test_gaussian_integrals
test_ao_basis
test_mo_basis
))
(alias

View File

@ -11,6 +11,7 @@ let test_suites: unit Alcotest.test list = [
"Gaussian_basis.General_basis", Test_gaussian_basis.General_basis.tests;
"Ao_basis.Ao_basis_gaussian", Test_ao_basis.Ao_basis_gaussian.tests;
"Ao_basis.Ao_basis", Test_ao_basis.Ao_basis.tests;
"Mo_basis.Guess", Test_mo_basis.Guess.tests;
]
let () = Alcotest.run "QCaml" test_suites