10
1
mirror of https://gitlab.com/scemama/QCaml.git synced 2025-01-03 10:05:40 +01:00
QCaml/examples/ex_fci.org

143 lines
3.3 KiB
Org Mode
Raw Normal View History

2024-09-10 16:58:28 +02:00
#+TITLE: Full-CI
#+PROPERTY: header-args :tangle ex_fci.ml :comments link :exports code
In this example, we write a program that makes a valence Full CI calculation with
Hartree-Fock orbitals. The molecule is read in =xyz= format and a Gaussian
atomic basis set in GAMESS format.
* Header
#+BEGIN_SRC ocaml
open Qcaml
open Common
open Linear_algebra
let () =
#+END_SRC
* Command-line arguments
We use the =Command_line= module to define the following possible
arguments:
- =-b --basis= : The name of the file containing the basis set
- =-x --xyz= : The name of the file containing the atomic coordinates
- =-c --charge= : The charge of the molecule
- =-m --multiplicity= : The spin multiplicity
** Definition
#+BEGIN_SRC ocaml
let open Command_line in
begin
set_header_doc (Sys.argv.(0));
set_description_doc "Computes the one- and two-electron hartree_fock on the Gaussian atomic basis set.";
set_specs
[ { short='b' ; long="basis" ; opt=Mandatory;
arg=With_arg "<string>";
doc="Name of the file containing the basis set"; } ;
{ short='x' ; long="xyz" ; opt=Mandatory;
arg=With_arg "<string>";
doc="Name of the file containing the nuclear coordinates in xyz format"; } ;
{ short='m' ; long="multiplicity" ; opt=Optional;
arg=With_arg "<int>";
doc="Spin multiplicity (2S+1). Default is singlet"; } ;
{ short='c' ; long="charge" ; opt=Optional;
arg=With_arg "<int>";
doc="Total charge of the molecule. Specify negative charges with 'm' instead of the minus sign, for example m1 instead of -1. Default is 0"; } ;
]
end;
#+END_SRC
** Interpretation
#+BEGIN_SRC ocaml
let basis_file = Util.of_some @@ Command_line.get "basis" in
let nuclei_file = Util.of_some @@ Command_line.get "xyz" in
let charge =
match Command_line.get "charge" with
| Some x -> ( if x.[0] = 'm' then
~- (int_of_string (String.sub x 1 (String.length x - 1)))
else
int_of_string x )
| None -> 0
in
let multiplicity =
match Command_line.get "multiplicity" with
| Some x -> int_of_string x
| None -> 1
in
#+END_SRC
* Computation
We first read the =xyz= file to create a molecule:
#+BEGIN_SRC ocaml
let nuclei =
Particles.Nuclei.of_xyz_file nuclei_file
in
#+END_SRC
Then we create a Gaussian AO basis using the atomic coordinates:
#+BEGIN_SRC ocaml
let ao_basis =
Ao.Basis.of_nuclei_and_basis_filename ~nuclei basis_file
in
#+END_SRC
We create a simulation from the nuclei and the basis set:
#+BEGIN_SRC ocaml
let simulation =
Simulation.make ~multiplicity ~charge ~nuclei ao_basis
in
#+END_SRC
and we make the Hartree-Fock computation:
#+BEGIN_SRC ocaml
let hf =
Mo.Hartree_fock.make ~guess:`Huckel simulation
in
#+END_SRC
We define the FCI determinant space:
#+BEGIN_SRC ocaml
let mo_basis =
Mo.Basis.of_hartree_fock hf
in
let frozen_core =
Mo.Frozen_core.(make Large nuclei)
in
let det_space =
Ci.Determinant_space.fci_of_mo_basis ~frozen_core mo_basis
in
#+END_SRC
And we run the FCI calculation:
#+BEGIN_SRC ocaml
let ci =
Ci.make ~det_space simulation
in
#+END_SRC
* Output
We print the FCI energy:
#+BEGIN_SRC ocaml
Format.printf "@[HF energy : %f@]\n" (Mo.Hartree_fock.energy hf) ;
Format.printf "@[FCI energy : %a@]\n" Vector.pp (Ci.eigenvalues ci)
#+END_SRC