#+TITLE: Full-CI #+PROPERTY: header-args :tangle ex_fci.ml :comments link :exports code In this example, we write a program that makes a valence Full CI calculation with Hartree-Fock orbitals. The molecule is read in =xyz= format and a Gaussian atomic basis set in GAMESS format. * Header #+BEGIN_SRC ocaml open Qcaml open Common open Linear_algebra let () = #+END_SRC * Command-line arguments We use the =Command_line= module to define the following possible arguments: - =-b --basis= : The name of the file containing the basis set - =-x --xyz= : The name of the file containing the atomic coordinates - =-c --charge= : The charge of the molecule - =-m --multiplicity= : The spin multiplicity ** Definition #+BEGIN_SRC ocaml let open Command_line in begin set_header_doc (Sys.argv.(0)); set_description_doc "Computes the one- and two-electron hartree_fock on the Gaussian atomic basis set."; set_specs [ { short='b' ; long="basis" ; opt=Mandatory; arg=With_arg ""; doc="Name of the file containing the basis set"; } ; { short='x' ; long="xyz" ; opt=Mandatory; arg=With_arg ""; doc="Name of the file containing the nuclear coordinates in xyz format"; } ; { short='m' ; long="multiplicity" ; opt=Optional; arg=With_arg ""; doc="Spin multiplicity (2S+1). Default is singlet"; } ; { short='c' ; long="charge" ; opt=Optional; arg=With_arg ""; doc="Total charge of the molecule. Specify negative charges with 'm' instead of the minus sign, for example m1 instead of -1. Default is 0"; } ; ] end; #+END_SRC ** Interpretation #+BEGIN_SRC ocaml let basis_file = Util.of_some @@ Command_line.get "basis" in let nuclei_file = Util.of_some @@ Command_line.get "xyz" in let charge = match Command_line.get "charge" with | Some x -> ( if x.[0] = 'm' then ~- (int_of_string (String.sub x 1 (String.length x - 1))) else int_of_string x ) | None -> 0 in let multiplicity = match Command_line.get "multiplicity" with | Some x -> int_of_string x | None -> 1 in #+END_SRC * Computation We first read the =xyz= file to create a molecule: #+BEGIN_SRC ocaml let nuclei = Particles.Nuclei.of_xyz_file nuclei_file in #+END_SRC Then we create a Gaussian AO basis using the atomic coordinates: #+BEGIN_SRC ocaml let ao_basis = Ao.Basis.of_nuclei_and_basis_filename ~nuclei basis_file in #+END_SRC We create a simulation from the nuclei and the basis set: #+BEGIN_SRC ocaml let simulation = Simulation.make ~multiplicity ~charge ~nuclei ao_basis in #+END_SRC and we make the Hartree-Fock computation: #+BEGIN_SRC ocaml let hf = Mo.Hartree_fock.make ~guess:`Huckel simulation in #+END_SRC We define the FCI determinant space: #+BEGIN_SRC ocaml let mo_basis = Mo.Basis.of_hartree_fock hf in let frozen_core = Mo.Frozen_core.(make Large nuclei) in let det_space = Ci.Determinant_space.fci_of_mo_basis ~frozen_core mo_basis in #+END_SRC And we run the FCI calculation: #+BEGIN_SRC ocaml let ci = Ci.make ~det_space simulation in #+END_SRC * Output We print the FCI energy: #+BEGIN_SRC ocaml Format.printf "@[HF energy : %f@]\n" (Mo.Hartree_fock.energy hf) ; Format.printf "@[FCI energy : %a@]\n" Vector.pp (Ci.eigenvalues ci) #+END_SRC