mirror of
https://gitlab.com/scemama/QCaml.git
synced 2025-01-05 10:58:47 +01:00
160 lines
4.9 KiB
OCaml
160 lines
4.9 KiB
OCaml
|
open Lacaml.D
|
||
|
|
||
|
module De = Determinant
|
||
|
module Ex = Excitation
|
||
|
module Sp = Spindeterminant
|
||
|
|
||
|
type t = float list
|
||
|
|
||
|
|
||
|
let non_zero integrals degree_a degree_b ki kj =
|
||
|
let kia = De.alfa ki and kib = De.beta ki
|
||
|
and kja = De.alfa kj and kjb = De.beta kj
|
||
|
in
|
||
|
let single h p spin same opposite =
|
||
|
let same_spin_mo_list =
|
||
|
Sp.to_list same
|
||
|
and opposite_spin_mo_list =
|
||
|
Sp.to_list opposite
|
||
|
in
|
||
|
fun one_e two_e ->
|
||
|
let same_spin =
|
||
|
List.fold_left (fun accu i -> accu +. two_e h i p i spin spin) 0. same_spin_mo_list
|
||
|
and opposite_spin =
|
||
|
List.fold_left (fun accu i -> accu +. two_e h i p i spin (Spin.other spin) ) 0. opposite_spin_mo_list
|
||
|
in (one_e h p spin) +. same_spin +. opposite_spin
|
||
|
in
|
||
|
let diag_element =
|
||
|
let mo_a = Sp.to_list kia
|
||
|
and mo_b = Sp.to_list kib
|
||
|
in
|
||
|
fun one_e two_e ->
|
||
|
let one =
|
||
|
(List.fold_left (fun accu i -> accu +. one_e i i Spin.Alfa) 0. mo_a)
|
||
|
+.
|
||
|
(List.fold_left (fun accu i -> accu +. one_e i i Spin.Beta) 0. mo_b)
|
||
|
in
|
||
|
let two =
|
||
|
let rec aux_same spin accu = function
|
||
|
| [] -> accu
|
||
|
| i :: rest ->
|
||
|
let new_accu =
|
||
|
List.fold_left (fun accu j -> accu +. two_e i j i j spin spin) accu rest
|
||
|
in
|
||
|
aux_same spin new_accu rest
|
||
|
in
|
||
|
let rec aux_opposite accu other = function
|
||
|
| [] -> accu
|
||
|
| i :: rest ->
|
||
|
let new_accu =
|
||
|
List.fold_left (fun accu j -> accu +. two_e i j i j Spin.Alfa Spin.Beta) accu other
|
||
|
in
|
||
|
aux_opposite new_accu other rest
|
||
|
in
|
||
|
(aux_same Spin.Alfa 0. mo_a) +. (aux_same Spin.Beta 0. mo_b) +.
|
||
|
(aux_opposite 0. mo_a mo_b)
|
||
|
in
|
||
|
one +. two
|
||
|
in
|
||
|
let result =
|
||
|
match degree_a, degree_b with
|
||
|
| 1, 1 -> (* alpha-beta double *)
|
||
|
begin
|
||
|
let ha, pa, phase_a = Ex.single_of_spindet kia kja in
|
||
|
let hb, pb, phase_b = Ex.single_of_spindet kib kjb in
|
||
|
match phase_a, phase_b with
|
||
|
| Phase.Pos, Phase.Pos
|
||
|
| Phase.Neg, Phase.Neg -> fun _ two_e -> two_e ha hb pa pb Spin.Alfa Spin.Beta
|
||
|
| Phase.Neg, Phase.Pos
|
||
|
| Phase.Pos, Phase.Neg -> fun _ two_e -> -. two_e ha hb pa pb Spin.Alfa Spin.Beta
|
||
|
end
|
||
|
|
||
|
| 2, 0 -> (* alpha double *)
|
||
|
begin
|
||
|
let h1, p1, h2, p2, phase = Ex.double_of_spindet kia kja in
|
||
|
match phase with
|
||
|
| Phase.Pos -> fun _ two_e -> two_e h1 h2 p1 p2 Spin.Alfa Spin.Alfa
|
||
|
| Phase.Neg -> fun _ two_e -> -. two_e h1 h2 p1 p2 Spin.Alfa Spin.Alfa
|
||
|
end
|
||
|
|
||
|
| 0, 2 -> (* beta double *)
|
||
|
begin
|
||
|
let h1, p1, h2, p2, phase = Ex.double_of_spindet kib kjb in
|
||
|
match phase with
|
||
|
| Phase.Pos -> fun _ two_e -> two_e h1 h2 p1 p2 Spin.Beta Spin.Beta
|
||
|
| Phase.Neg -> fun _ two_e -> -. two_e h1 h2 p1 p2 Spin.Beta Spin.Beta
|
||
|
end
|
||
|
|
||
|
| 1, 0 -> (* alpha single *)
|
||
|
begin
|
||
|
let h, p, phase = Ex.single_of_spindet kia kja in
|
||
|
match phase with
|
||
|
| Phase.Pos -> fun one_e two_e -> single h p Spin.Alfa kia kib one_e two_e
|
||
|
| Phase.Neg -> fun one_e two_e -> -. single h p Spin.Alfa kia kib one_e two_e
|
||
|
end
|
||
|
|
||
|
| 0, 1 -> (* beta single *)
|
||
|
begin
|
||
|
let h, p, phase = Ex.single_of_spindet kib kjb in
|
||
|
match phase with
|
||
|
| Phase.Pos -> fun one_e two_e -> single h p Spin.Beta kib kia one_e two_e
|
||
|
| Phase.Neg -> fun one_e two_e -> -. single h p Spin.Beta kib kia one_e two_e
|
||
|
end
|
||
|
|
||
|
| 0, 0 -> (* diagonal element *)
|
||
|
diag_element
|
||
|
|
||
|
| _ -> assert false
|
||
|
in
|
||
|
List.map (fun (one_e, two_e) -> result one_e two_e) integrals
|
||
|
|
||
|
|
||
|
let make integrals ki kj =
|
||
|
let degree_a, degree_b =
|
||
|
De.degrees ki kj
|
||
|
in
|
||
|
if degree_a+degree_b > 2 then
|
||
|
List.map (fun _ -> 0.) integrals
|
||
|
else
|
||
|
non_zero integrals degree_a degree_b ki kj
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
let make_s2 ki kj =
|
||
|
let degree_a = De.degree_alfa ki kj in
|
||
|
let kia = De.alfa ki in
|
||
|
let kja = De.alfa kj in
|
||
|
if degree_a > 1 then 0.
|
||
|
else
|
||
|
let degree_b = De.degree_beta ki kj in
|
||
|
let kib = De.beta ki in
|
||
|
let kjb = De.beta kj in
|
||
|
match degree_a, degree_b with
|
||
|
| 1, 1 -> (* alpha-beta double *)
|
||
|
let ha, pa, phase_a = Ex.single_of_spindet kia kja in
|
||
|
let hb, pb, phase_b = Ex.single_of_spindet kib kjb in
|
||
|
if ha = pb && hb = pa then
|
||
|
begin
|
||
|
match phase_a, phase_b with
|
||
|
| Phase.Pos, Phase.Pos
|
||
|
| Phase.Neg, Phase.Neg -> -1.
|
||
|
| Phase.Neg, Phase.Pos
|
||
|
| Phase.Pos, Phase.Neg -> 1.
|
||
|
end
|
||
|
else 0.
|
||
|
| 0, 0 ->
|
||
|
let ba = Sp.bitstring kia and bb = Sp.bitstring kib in
|
||
|
let tmp = Z.(logxor ba bb) in
|
||
|
let popcount x =
|
||
|
if x = Z.zero then 0 else
|
||
|
Z.popcount x
|
||
|
in
|
||
|
let n_a = Z.(logand ba tmp) |> popcount in
|
||
|
let n_b = Z.(logand bb tmp) |> popcount in
|
||
|
let s_z = 0.5 *. float_of_int (n_a - n_b) in
|
||
|
float_of_int n_a +. s_z *. (s_z -. 1.)
|
||
|
| _ -> 0.
|
||
|
|
||
|
|