mirror of
https://gitlab.com/scemama/QCaml.git
synced 2024-12-09 22:13:32 +01:00
S2 is programmed in CI
This commit is contained in:
parent
f2794fa54e
commit
ecf61058f9
157
CI/CI.ml
157
CI/CI.ml
@ -1,13 +1,12 @@
|
||||
open Lacaml.D
|
||||
|
||||
module De = Determinant
|
||||
module Ex = Excitation
|
||||
module Sp = Spindeterminant
|
||||
module Ds = Determinant_space
|
||||
|
||||
type t =
|
||||
{
|
||||
det_space : Determinant_space.t ;
|
||||
det_space : Ds.t ;
|
||||
h_matrix : Mat.t lazy_t ;
|
||||
s2_matrix : Mat.t lazy_t ;
|
||||
eigensystem : (Mat.t * Vec.t) lazy_t;
|
||||
}
|
||||
|
||||
@ -15,6 +14,8 @@ let det_space t = t.det_space
|
||||
|
||||
let h_matrix t = Lazy.force t.h_matrix
|
||||
|
||||
let s2_matrix t = Lazy.force t.s2_matrix
|
||||
|
||||
let eigensystem t = Lazy.force t.eigensystem
|
||||
|
||||
let eigenvectors t =
|
||||
@ -23,131 +24,49 @@ let eigenvectors t =
|
||||
let eigenvalues t =
|
||||
let (_,x) = eigensystem t in x
|
||||
|
||||
|
||||
let h_ij mo_basis ki kj =
|
||||
let h_integrals mo_basis =
|
||||
let one_e_ints = MOBasis.one_e_ints mo_basis
|
||||
and two_e_ints = MOBasis.two_e_ints mo_basis
|
||||
and degree_a, degree_b = De.degrees ki kj
|
||||
in
|
||||
if degree_a+degree_b > 2 then
|
||||
0.
|
||||
else
|
||||
begin
|
||||
let kia = De.alfa ki and kib = De.beta ki
|
||||
and kja = De.alfa kj and kjb = De.beta kj
|
||||
in
|
||||
let integral =
|
||||
ERI.get_phys two_e_ints
|
||||
in
|
||||
let anti_integral i j k l =
|
||||
integral i j k l -. integral i j l k
|
||||
in
|
||||
let single h p same opposite =
|
||||
let same_spin =
|
||||
Sp.to_list same
|
||||
|> List.fold_left (fun accu i -> accu +. anti_integral h i p i) 0.
|
||||
and opposite_spin =
|
||||
Sp.to_list opposite
|
||||
|> List.fold_left (fun accu i -> accu +. integral h i p i) 0.
|
||||
and one_e =
|
||||
one_e_ints.{h,p}
|
||||
in one_e +. same_spin +. opposite_spin
|
||||
in
|
||||
let diag_element () =
|
||||
let mo_a = Sp.to_list kia
|
||||
and mo_b = Sp.to_list kib
|
||||
in
|
||||
let one_e =
|
||||
List.concat [mo_a ; mo_b]
|
||||
|> List.fold_left (fun accu i -> accu +. one_e_ints.{i,i}) 0.
|
||||
and two_e =
|
||||
let two_index i j = integral i j i j
|
||||
and anti_two_index i j = anti_integral i j i j
|
||||
in
|
||||
let rec aux_same accu = function
|
||||
| [] -> accu
|
||||
| i :: rest ->
|
||||
let new_accu =
|
||||
List.fold_left (fun accu j -> accu +. anti_two_index i j) accu rest
|
||||
in
|
||||
aux_same new_accu rest
|
||||
in
|
||||
let rec aux_opposite accu other = function
|
||||
| [] -> accu
|
||||
| i :: rest ->
|
||||
let new_accu =
|
||||
List.fold_left (fun accu j -> accu +. two_index i j) accu other
|
||||
in
|
||||
aux_opposite new_accu other rest
|
||||
in
|
||||
(aux_same 0. mo_a) +. (aux_same 0. mo_b) +. (aux_opposite 0. mo_a mo_b)
|
||||
in
|
||||
one_e +. two_e
|
||||
in
|
||||
match degree_a, degree_b with
|
||||
| 1, 1 -> (* alpha-beta double *)
|
||||
begin
|
||||
let ha, pa, phase_a = Ex.single_of_spindet kia kja in
|
||||
let hb, pb, phase_b = Ex.single_of_spindet kib kjb in
|
||||
match phase_a, phase_b with
|
||||
| Phase.Pos, Phase.Pos
|
||||
| Phase.Neg, Phase.Neg -> +. integral ha hb pa pb
|
||||
| Phase.Neg, Phase.Pos
|
||||
| Phase.Pos, Phase.Neg -> -. integral ha hb pa pb
|
||||
end
|
||||
( (fun i j _ -> one_e_ints.{i,j}),
|
||||
(fun i j k l s s' ->
|
||||
if s' = Spin.other s then
|
||||
ERI.get_phys two_e_ints i j k l
|
||||
else
|
||||
(ERI.get_phys two_e_ints i j k l) -.
|
||||
(ERI.get_phys two_e_ints i j l k)
|
||||
) )
|
||||
|
||||
| 2, 0 -> (* alpha double *)
|
||||
begin
|
||||
let h1, p1, h2, p2, phase = Ex.double_of_spindet kia kja in
|
||||
match phase with
|
||||
| Phase.Pos -> +. anti_integral h1 h2 p1 p2
|
||||
| Phase.Neg -> -. anti_integral h1 h2 p1 p2
|
||||
end
|
||||
|
||||
| 0, 2 -> (* beta double *)
|
||||
begin
|
||||
let h1, p1, h2, p2, phase = Ex.double_of_spindet kib kjb in
|
||||
match phase with
|
||||
| Phase.Pos -> +. anti_integral h1 h2 p1 p2
|
||||
| Phase.Neg -> -. anti_integral h1 h2 p1 p2
|
||||
end
|
||||
|
||||
| 1, 0 -> (* alpha single *)
|
||||
begin
|
||||
let h, p, phase = Ex.single_of_spindet kia kja in
|
||||
match phase with
|
||||
| Phase.Pos -> +. single h p kia kib
|
||||
| Phase.Neg -> -. single h p kia kib
|
||||
end
|
||||
let h_ij mo_basis ki kj =
|
||||
let integrals =
|
||||
List.map (fun f -> f mo_basis)
|
||||
[ h_integrals ]
|
||||
in
|
||||
CIMatrixElement.make integrals ki kj
|
||||
|> List.hd
|
||||
|
||||
| 0, 1 -> (* beta single *)
|
||||
begin
|
||||
let h, p, phase = Ex.single_of_spindet kib kjb in
|
||||
match phase with
|
||||
| Phase.Pos -> +. single h p kib kia
|
||||
| Phase.Neg -> -. single h p kib kia
|
||||
end
|
||||
|
||||
| 0, 0 -> (* diagonal element *)
|
||||
diag_element ()
|
||||
|
||||
| _ -> assert false
|
||||
end
|
||||
|
||||
|
||||
let make det_space =
|
||||
let ndet = Determinant_space.size det_space in
|
||||
let det = Determinant_space.determinants det_space in
|
||||
let mo_basis = Determinant_space.mo_basis det_space in
|
||||
let ndet = Ds.size det_space in
|
||||
let det = Ds.determinants det_space in
|
||||
let mo_basis = Ds.mo_basis det_space in
|
||||
let h_matrix = lazy (
|
||||
Array.init ndet (fun i ->
|
||||
let ki = det.(i) in
|
||||
Array.init ndet (fun j ->
|
||||
let kj = det.(j) in
|
||||
h_ij mo_basis ki kj
|
||||
)
|
||||
)
|
||||
|> Mat.of_array
|
||||
Array.init ndet (fun i -> let ki = det.(i) in
|
||||
Array.init ndet (fun j -> let kj = det.(j) in
|
||||
h_ij mo_basis ki kj
|
||||
))
|
||||
|> Mat.of_array
|
||||
)
|
||||
in
|
||||
let s2_matrix = lazy (
|
||||
Array.init ndet (fun i -> let ki = det.(i) in
|
||||
Array.init ndet (fun j -> let kj = det.(j) in
|
||||
CIMatrixElement.make_s2 ki kj
|
||||
))
|
||||
|> Mat.of_array
|
||||
)
|
||||
in
|
||||
let eigensystem = lazy (
|
||||
@ -155,5 +74,5 @@ let make det_space =
|
||||
|> Util.diagonalize_symm
|
||||
)
|
||||
in
|
||||
{ det_space ; h_matrix ; eigensystem }
|
||||
{ det_space ; h_matrix ; s2_matrix ; eigensystem }
|
||||
|
||||
|
159
CI/CIMatrixElement.ml
Normal file
159
CI/CIMatrixElement.ml
Normal file
@ -0,0 +1,159 @@
|
||||
open Lacaml.D
|
||||
|
||||
module De = Determinant
|
||||
module Ex = Excitation
|
||||
module Sp = Spindeterminant
|
||||
|
||||
type t = float list
|
||||
|
||||
|
||||
let non_zero integrals degree_a degree_b ki kj =
|
||||
let kia = De.alfa ki and kib = De.beta ki
|
||||
and kja = De.alfa kj and kjb = De.beta kj
|
||||
in
|
||||
let single h p spin same opposite =
|
||||
let same_spin_mo_list =
|
||||
Sp.to_list same
|
||||
and opposite_spin_mo_list =
|
||||
Sp.to_list opposite
|
||||
in
|
||||
fun one_e two_e ->
|
||||
let same_spin =
|
||||
List.fold_left (fun accu i -> accu +. two_e h i p i spin spin) 0. same_spin_mo_list
|
||||
and opposite_spin =
|
||||
List.fold_left (fun accu i -> accu +. two_e h i p i spin (Spin.other spin) ) 0. opposite_spin_mo_list
|
||||
in (one_e h p spin) +. same_spin +. opposite_spin
|
||||
in
|
||||
let diag_element =
|
||||
let mo_a = Sp.to_list kia
|
||||
and mo_b = Sp.to_list kib
|
||||
in
|
||||
fun one_e two_e ->
|
||||
let one =
|
||||
(List.fold_left (fun accu i -> accu +. one_e i i Spin.Alfa) 0. mo_a)
|
||||
+.
|
||||
(List.fold_left (fun accu i -> accu +. one_e i i Spin.Beta) 0. mo_b)
|
||||
in
|
||||
let two =
|
||||
let rec aux_same spin accu = function
|
||||
| [] -> accu
|
||||
| i :: rest ->
|
||||
let new_accu =
|
||||
List.fold_left (fun accu j -> accu +. two_e i j i j spin spin) accu rest
|
||||
in
|
||||
aux_same spin new_accu rest
|
||||
in
|
||||
let rec aux_opposite accu other = function
|
||||
| [] -> accu
|
||||
| i :: rest ->
|
||||
let new_accu =
|
||||
List.fold_left (fun accu j -> accu +. two_e i j i j Spin.Alfa Spin.Beta) accu other
|
||||
in
|
||||
aux_opposite new_accu other rest
|
||||
in
|
||||
(aux_same Spin.Alfa 0. mo_a) +. (aux_same Spin.Beta 0. mo_b) +.
|
||||
(aux_opposite 0. mo_a mo_b)
|
||||
in
|
||||
one +. two
|
||||
in
|
||||
let result =
|
||||
match degree_a, degree_b with
|
||||
| 1, 1 -> (* alpha-beta double *)
|
||||
begin
|
||||
let ha, pa, phase_a = Ex.single_of_spindet kia kja in
|
||||
let hb, pb, phase_b = Ex.single_of_spindet kib kjb in
|
||||
match phase_a, phase_b with
|
||||
| Phase.Pos, Phase.Pos
|
||||
| Phase.Neg, Phase.Neg -> fun _ two_e -> two_e ha hb pa pb Spin.Alfa Spin.Beta
|
||||
| Phase.Neg, Phase.Pos
|
||||
| Phase.Pos, Phase.Neg -> fun _ two_e -> -. two_e ha hb pa pb Spin.Alfa Spin.Beta
|
||||
end
|
||||
|
||||
| 2, 0 -> (* alpha double *)
|
||||
begin
|
||||
let h1, p1, h2, p2, phase = Ex.double_of_spindet kia kja in
|
||||
match phase with
|
||||
| Phase.Pos -> fun _ two_e -> two_e h1 h2 p1 p2 Spin.Alfa Spin.Alfa
|
||||
| Phase.Neg -> fun _ two_e -> -. two_e h1 h2 p1 p2 Spin.Alfa Spin.Alfa
|
||||
end
|
||||
|
||||
| 0, 2 -> (* beta double *)
|
||||
begin
|
||||
let h1, p1, h2, p2, phase = Ex.double_of_spindet kib kjb in
|
||||
match phase with
|
||||
| Phase.Pos -> fun _ two_e -> two_e h1 h2 p1 p2 Spin.Beta Spin.Beta
|
||||
| Phase.Neg -> fun _ two_e -> -. two_e h1 h2 p1 p2 Spin.Beta Spin.Beta
|
||||
end
|
||||
|
||||
| 1, 0 -> (* alpha single *)
|
||||
begin
|
||||
let h, p, phase = Ex.single_of_spindet kia kja in
|
||||
match phase with
|
||||
| Phase.Pos -> fun one_e two_e -> single h p Spin.Alfa kia kib one_e two_e
|
||||
| Phase.Neg -> fun one_e two_e -> -. single h p Spin.Alfa kia kib one_e two_e
|
||||
end
|
||||
|
||||
| 0, 1 -> (* beta single *)
|
||||
begin
|
||||
let h, p, phase = Ex.single_of_spindet kib kjb in
|
||||
match phase with
|
||||
| Phase.Pos -> fun one_e two_e -> single h p Spin.Beta kib kia one_e two_e
|
||||
| Phase.Neg -> fun one_e two_e -> -. single h p Spin.Beta kib kia one_e two_e
|
||||
end
|
||||
|
||||
| 0, 0 -> (* diagonal element *)
|
||||
diag_element
|
||||
|
||||
| _ -> assert false
|
||||
in
|
||||
List.map (fun (one_e, two_e) -> result one_e two_e) integrals
|
||||
|
||||
|
||||
let make integrals ki kj =
|
||||
let degree_a, degree_b =
|
||||
De.degrees ki kj
|
||||
in
|
||||
if degree_a+degree_b > 2 then
|
||||
List.map (fun _ -> 0.) integrals
|
||||
else
|
||||
non_zero integrals degree_a degree_b ki kj
|
||||
|
||||
|
||||
|
||||
|
||||
let make_s2 ki kj =
|
||||
let degree_a = De.degree_alfa ki kj in
|
||||
let kia = De.alfa ki in
|
||||
let kja = De.alfa kj in
|
||||
if degree_a > 1 then 0.
|
||||
else
|
||||
let degree_b = De.degree_beta ki kj in
|
||||
let kib = De.beta ki in
|
||||
let kjb = De.beta kj in
|
||||
match degree_a, degree_b with
|
||||
| 1, 1 -> (* alpha-beta double *)
|
||||
let ha, pa, phase_a = Ex.single_of_spindet kia kja in
|
||||
let hb, pb, phase_b = Ex.single_of_spindet kib kjb in
|
||||
if ha = pb && hb = pa then
|
||||
begin
|
||||
match phase_a, phase_b with
|
||||
| Phase.Pos, Phase.Pos
|
||||
| Phase.Neg, Phase.Neg -> -1.
|
||||
| Phase.Neg, Phase.Pos
|
||||
| Phase.Pos, Phase.Neg -> 1.
|
||||
end
|
||||
else 0.
|
||||
| 0, 0 ->
|
||||
let ba = Sp.bitstring kia and bb = Sp.bitstring kib in
|
||||
let tmp = Z.(logxor ba bb) in
|
||||
let popcount x =
|
||||
if x = Z.zero then 0 else
|
||||
Z.popcount x
|
||||
in
|
||||
let n_a = Z.(logand ba tmp) |> popcount in
|
||||
let n_b = Z.(logand bb tmp) |> popcount in
|
||||
let s_z = 0.5 *. float_of_int (n_a - n_b) in
|
||||
float_of_int n_a +. s_z *. (s_z -. 1.)
|
||||
| _ -> 0.
|
||||
|
||||
|
@ -41,13 +41,18 @@ let negate_phase t =
|
||||
{ t with alfa = Spindeterminant.negate_phase t.alfa }
|
||||
|
||||
|
||||
let degree_alfa t t' =
|
||||
Spindeterminant.degree t.alfa t'.alfa
|
||||
|
||||
let degree_beta t t' =
|
||||
Spindeterminant.degree t.beta t'.beta
|
||||
|
||||
let degrees t t' =
|
||||
Spindeterminant.degree t.alfa t'.alfa,
|
||||
Spindeterminant.degree t.beta t'.beta
|
||||
degree_alfa t t', degree_beta t t'
|
||||
|
||||
|
||||
let degree t t' =
|
||||
let a, b = degrees t t' in a+b
|
||||
(degree_alfa t t') + (degree_beta t t')
|
||||
|
||||
|
||||
let of_lists a b =
|
||||
|
@ -44,6 +44,12 @@ val single_excitation : Spin.t -> hole -> particle -> t -> t
|
||||
val double_excitation : Spin.t -> hole -> particle -> Spin.t -> hole -> particle -> t -> t
|
||||
(** Double excitation operator {% $T_{hh'}^{pp'} = a^\dagger_p a^\dagger_{p'} a_{h'} a_h$ %}. *)
|
||||
|
||||
val degree_alfa : t -> t -> int
|
||||
(** Returns degree of excitation between two determinants in the {% $\alpha$ %} spin. *)
|
||||
|
||||
val degree_beta : t -> t -> int
|
||||
(** Returns degree of excitation between two determinants in the {% $\beta$ %} spin. *)
|
||||
|
||||
val degrees : t -> t -> int*int
|
||||
(** Returns degrees of excitation between two determinants in {% $\alpha$ %} and
|
||||
{% $\beta$ %} spins as a pair. *)
|
||||
|
@ -21,6 +21,7 @@ type t =
|
||||
eN_ints : NucInt.t lazy_t; (* Electron-nucleus potential integrals *)
|
||||
ee_ints : ERI.t lazy_t; (* Electron-electron potential integrals *)
|
||||
kin_ints : KinInt.t lazy_t; (* Kinetic energy integrals *)
|
||||
one_e_ints : Mat.t lazy_t; (* Kinetic energy integrals *)
|
||||
}
|
||||
|
||||
|
||||
@ -36,9 +37,7 @@ let eN_ints t = Lazy.force t.eN_ints
|
||||
let ee_ints t = Lazy.force t.ee_ints
|
||||
let kin_ints t = Lazy.force t.kin_ints
|
||||
let two_e_ints t = Lazy.force t.ee_ints
|
||||
let one_e_ints t =
|
||||
Mat.add (NucInt.matrix @@ Lazy.force t.eN_ints)
|
||||
(KinInt.matrix @@ Lazy.force t.kin_ints)
|
||||
let one_e_ints t = Lazy.force t.one_e_ints
|
||||
|
||||
let mo_matrix_of_ao_matrix ~mo_coef ao_matrix =
|
||||
xt_o_x ~x:mo_coef ~o:ao_matrix
|
||||
@ -150,8 +149,12 @@ let make ~simulation ~mo_type ~mo_occupation ~mo_coef () =
|
||||
|> four_index_transform ~mo_coef
|
||||
)
|
||||
in
|
||||
{ simulation ; mo_type ; mo_occupation ; mo_coef ;
|
||||
eN_ints ; ee_ints ; kin_ints }
|
||||
let one_e_ints = lazy (
|
||||
Mat.add (NucInt.matrix @@ Lazy.force eN_ints)
|
||||
(KinInt.matrix @@ Lazy.force kin_ints) )
|
||||
in
|
||||
{ simulation ; mo_type ; mo_occupation ; mo_coef ;
|
||||
eN_ints ; ee_ints ; kin_ints ; one_e_ints }
|
||||
|
||||
|
||||
let of_rhf hf =
|
||||
|
@ -1,6 +1,47 @@
|
||||
(** Electron spin *)
|
||||
|
||||
type t = Alfa | Beta
|
||||
type t = (* m_s *)
|
||||
| Alfa (* {% $m_s = +1/2$ %} *)
|
||||
| Beta (* {% $m_s = -1/2$ %} *)
|
||||
|
||||
let other = function
|
||||
| Alfa -> Beta
|
||||
| Beta -> Alfa
|
||||
|
||||
(*
|
||||
let half = 1. /. 2.
|
||||
|
||||
|
||||
(** {% $\alpha(m_s)$ %} *)
|
||||
let alfa = function
|
||||
| n, Alfa -> n
|
||||
| _, Beta -> 0.
|
||||
|
||||
|
||||
(** {% $\beta(m_s)$ %} *)
|
||||
let beta = function
|
||||
| _, Alfa -> 0.
|
||||
| n, Beta -> n
|
||||
|
||||
|
||||
(** {% $S_z(m_s)$ %} *)
|
||||
let s_z = function
|
||||
| n, Alfa -> half *. n, Alfa
|
||||
| n, Beta -> -. half *. n, Beta
|
||||
|
||||
let s_plus = function
|
||||
| n, Beta -> n , Alfa
|
||||
| _, Alfa -> 0., Alfa
|
||||
|
||||
let s_minus = function
|
||||
| n, Alfa -> n , Beta
|
||||
| _, Beta -> 0., Beta
|
||||
|
||||
let ( ++ ) (n, t) (m,t) =
|
||||
(m. +n.)
|
||||
|
||||
let s2 s =
|
||||
s_minus @@ s_plus s +.
|
||||
s_z s +.
|
||||
s_z @@ s_z s
|
||||
*)
|
||||
|
@ -8,5 +8,6 @@ letters as [Beta], so the alignment of the code is nicer.
|
||||
|
||||
type t = Alfa | Beta
|
||||
|
||||
val other : t -> t
|
||||
|
||||
|
||||
|
@ -29,7 +29,7 @@ let run ~out =
|
||||
| Some x -> x
|
||||
and nuclei_file =
|
||||
match !nuclei_file with
|
||||
| None -> raise (Invalid_argument "Basis set file should be specified with -c")
|
||||
| None -> raise (Invalid_argument "Coordinate file should be specified with -c")
|
||||
| Some x -> x
|
||||
and charge = !charge
|
||||
and multiplicity = !multiplicity
|
||||
|
@ -29,7 +29,7 @@ let run ~out =
|
||||
| Some x -> x
|
||||
and nuclei_file =
|
||||
match !nuclei_file with
|
||||
| None -> raise (Invalid_argument "Basis set file should be specified with -c")
|
||||
| None -> raise (Invalid_argument "Coordinate file should be specified with -c")
|
||||
| Some x -> x
|
||||
and charge = !charge
|
||||
and multiplicity = !multiplicity
|
||||
|
@ -23,7 +23,7 @@ let run ~out =
|
||||
| Some x -> x
|
||||
and nuclei_file =
|
||||
match !nuclei_file with
|
||||
| None -> raise (Invalid_argument "Basis set file should be specified with -c")
|
||||
| None -> raise (Invalid_argument "Coordinate file should be specified with -c")
|
||||
| Some x -> x
|
||||
in
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user