New_Website/tddft-md/formal.html

8 lines
18 KiB
HTML

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="content-type" content="application/xhtml+xml; charset=iso-8859-1" />
<title>Theory of Cluster Dynamics</title>
<link href="../style.css" rel="stylesheet" type="text/css" />
</head>
<body>
<div id="container">
<div id="header">
<div id="menu">
<div id="navMenu">
<ul>
<li style="margin-top:1px;border-top:1px solid #B0C4DE; "><a href="../index.html">Home</a></li>
<li><a href="../intro.html">Introductory Overview</a></li>
<li><a href="../research.html">Scientific Information</a></li>
<li><a href="../staff.html">Staff</a></li>
<li><a href="../publications.html">Publications/Talks</a></li>
<li><a href="../contact.html">Contact</a></li>
</ul>
</div>
</div>
<div id="image">
<p><font size="6" color="white"><b>Theory of Cluster Dynamics</b></font><font
size="5"><br />
</font><font size="6"> </font><font size="5">The Toulouse -
Erlangen Collaboration</font></p>
</div>
<div id="content"> <a name="oben"> </a>
<div style="margin:15px;width:770px;border:1px solid gray;float:left;font-size:10px;"><a
name="oben">
</a>
<div style="width:180px;float:left;text-align:center;font-size:12px"><a
name="oben">
</a><a href="formal.html">1. Theoretical developments </a> </div>
<div style="width:200px;float:left;text-align:center;font-size:10px;">
<a href="../analysis/detail1.html"> 2. Analysis of cluster
dynamics </a> </div>
<div style="width:200px;float:left;text-align:center;font-weight:900;font-size:10px;">
<a href="../analysis/detail2.html"> 3. Clusters in strong external
fields </a> </div>
<div style="width:180px;float:left;text-align:center;font-weight:900;font-size:10px;">
<a href="detailQMMM.html"> 4. Embedded clusters </a> </div>
</div>
<div id="WideContent">
<div id="contentBoxWide">
<div id="contentBoxHeader">
<p>Time Dependent Density Functional Theory with Molecular
Dynamics </p>
</div>
<div id="contentBoxContent">
<p> </p>
<div align="CENTER"> <font size="+2"><b> TDLDA-MD:</b></font> <br />
<br />
<font size="+1"><b>Time-dependent local-density approximation
plus ionic molecular dynamics</b></font> <br />
</div>
<p> (<em>This is a very short summary of our formal scheme. A
most detailed description is found in </em>[<a href="../literatur.html#own1281">303</a>].)
</p>
<p> The <font color="#ff0000"> electron cloud</font> is
described by density functional theory at the level of TDLDA.
The dynamical degrees of freedom are the set of occupied <font
color="#ff0000">
single-electron wavefunctions <font color="#ff0000"><!-- MATH
$\varphi_\alpha$ --> <img src="img1.png" alt="\bgroup\color{red}$ \varphi_\alpha$\egroup"
width="26"
border="0"
align="MIDDLE"
height="33" /></font></font>.
The <font color="#00b300"> ions</font> are treated by
classical MD and their degrees of freedom are the <font color="#00b300">
positions <i><b>R<sub>I</sub></b></i> and momenta <i><b>P<sub>I</sub></b></i>
<font color="#00b300"><!-- MATH
$({R}_I,{P}_I)$ -->
<!-- <IMG
WIDTH="69" HEIGHT="37" ALIGN="MIDDLE" BORDER="0" SRC="img2.png" ALT="\bgroup\color{dgreen}$ ({R}_I,{P}_I)$\egroup"></FONT></FONT>.--></font></font>.
The starting point is the total energy given by: <br />
</p>
<div align="CENTER">
<!-- MATH
\begin{eqnarray*}E_{\rm total} &=& {\color{red} E_{\rm kin}(\{\varphi_\alpha\}) + E_{\rm C}(\rho) + E_{\rm xc}^{\rm (LDA)}(\rho_\uparrow,\rho_\downarrow) } + E_{\rm el,ion}({\color{red} \rho},{\color{dgreen} \{{R}_I\}}) + {\color{dgreen} E_{\rm ion}(\{{R}_I,{P}_I\})} + E_{\rm ext}({\color{red} \rho},{\color{dgreen} {R}_I},t) \quad.\end{eqnarray*} -->
<table width="100%" cellpadding="0" align="CENTER">
<tbody>
<tr valign="MIDDLE">
<td nowrap="nowrap" align="RIGHT"><img src="img3.png" alt="$\displaystyle E_{\rm total}$"
width="47"
border="0"
align="MIDDLE"
height="35" /></td>
<td nowrap="nowrap" width="10" align="CENTER"><img src="img4.png"
alt="$\displaystyle =$"
width="19"
border="0"
align="MIDDLE"
height="33" /></td>
<td nowrap="nowrap" align="LEFT"><img src="img5.png" alt="$\displaystyle {\color{red} E_{\rm kin}(\{\varphi_\alpha\})+ E_{\rm C}(\rho)+ ......}_I,{P}_I\})} +E_{\rm ext}({\color{red} \rho},{\color{dgreen} {R}_I},t) \quad.$"
width="690"
border="0"
align="MIDDLE"
height="43" /></td>
<td width="10" align="RIGHT"> </td>
</tr>
</tbody>
</table>
</div>
<br clear="ALL" />
<p> The electronic kinetic energy <font color="#00b300"><!-- MATH
${\color{red} E_{\rm kin}}$ --> <img src="img6.png" alt="\bgroup\color{dgreen}$ {\color{red} E_{\rm kin}}$\egroup"
width="37"
border="0"
align="MIDDLE"
height="35" /></font>
employs the single-electron wavefunctions <font color="#00b300"><!-- MATH
${\color{red} \varphi_\alpha}$ --> <img src="img7.png" alt="\bgroup\color{dgreen}$ {\color{red} \varphi_\alpha}$\egroup"
width="26"
border="0"
align="MIDDLE"
height="33" /></font>
which maintains the quantum mechanical shell effects. All
other electronic energies refer only to the local
spin-densities or total density
<!-- MATH
${\color{red} \rho=\rho_\uparrow+\rho_\downarrow}$ --> <img src="img8.png" alt="\bgroup\color{dgreen}$ {\color{red} \rho=\rho_\uparrow+\rho_\downarrow}$\egroup"
width="92"
border="0"
align="MIDDLE"
height="33" />;
the Coulomb energy <font color="#00b300"><!-- MATH
${\color{red} E_{\rm C}}$ --> <img src="img9.png" alt="\bgroup\color{dgreen}$ {\color{red} E_{\rm C}}$\egroup"
width="29"
border="0"
align="MIDDLE"
height="35" /></font>
naturally, and the exchange-correlation energy <font color="#00b300"><!-- MATH
${\color{red} E_{\rm xc}}$ --> <img src="img10.png" alt="\bgroup\color{dgreen}$ {\color{red} E_{\rm xc}}$\egroup"
width="32"
border="0"
align="MIDDLE"
height="35" /></font>
by virtue of the LDA (often augmented by a self-interaction
correction (SIC) <a href="../literatur.html#own1252">[277]</a>).
The electron-ion coupling <font color="#00b300"><!-- MATH
$E_{\rm el,ion}$ --> <img src="img11.png" alt="\bgroup\color{dgreen}$ E_{\rm el,ion}$\egroup"
width="51"
border="0"
align="MIDDLE"
height="35" /></font>
is realized by pseudo-potentials, mostly soft local ones <a href="../literatur.html#own1216">[249]</a>.
The ionic part <font color="#00b300"><!-- MATH
${\color{dgreen} E_{\rm ion}}$ --> <img src="img12.png" alt="\bgroup\color{dgreen}$ {\color{dgreen} E_{\rm ion}}$\egroup"
width="37"
border="0"
align="MIDDLE"
height="35" /></font>
is composed of Coulomb interaction and kinetic energy.
Excitation mechanisms (laser, ionic collisions) are described
in <font color="#00b300"><!-- MATH
$E_{\rm ext}$ --> <img src="img13.png" alt="\bgroup\color{dgreen}$ E_{\rm ext}$\egroup"
width="37"
border="0"
align="MIDDLE"
height="35" /></font>
as external time-dependent potentials. </p>
<p> The coupled equations of motion are obtained in standard
manner by variation. They read
<!-- MATH
\begin{displaymath}{\color{red} \imath\partial_t\varphi_\alpha = \Big(\frac{\hat{p}^2}{2m} + \frac{\delta E_{\rm total}}{\delta\rho_{\sigma_\alpha}}\Big) \varphi_\alpha } \qquad,\qquad {\color{dgreen} \partial_t{R}_I = \frac{{P}_I}{M_I} \quad,\quad \partial_t{P}_I = -\nabla_{{R}_I}E_{\rm total}} \quad.\end{displaymath} -->
</p>
<p></p>
<div align="CENTER"> <img src="img14.png" alt="\bgroup\color{dgreen}$\displaystyle {\color{red} \imath\partial_t\varphi_\alpha......M_I} \quad,\quad\partial_t{P}_I =-\nabla_{{R}_I}E_{\rm total}} \quad.$\egroup"
width="618"
border="0"
align="MIDDLE"
height="65" />
</div>
<p> where <font color="#00b300"><!-- MATH
${\color{red} \sigma_\alpha}$ --> <img src="img15.png" alt="\bgroup\color{dgreen}$ {\color{red} \sigma_\alpha}$\egroup"
width="24"
border="0"
align="MIDDLE"
height="33" /></font>
is the spin orientation of the state <font color="#00b300"><!-- MATH
${\color{red} \alpha}$ --> <img src="img16.png" alt="\bgroup\color{dgreen}$ {\color{red} \alpha}$\egroup"
width="16"
border="0"
align="BOTTOM"
height="19" /></font>.
The equations imply a non-adiabatic coupling which goes beyond
usual Born-Oppenheimer approach. Non-adiabatic effects become
crucial in cluster dynamics induced by strong fields. The
numerical solution involves the representation of the
wavefunctions on a spatial grid, time-splitting for the
electronic propagation and the Verlet algorithm for MD, for
details see [<a href="../literatur.html#own1230">254</a>]. The
obtained wavefunctions, densities, and ionic coordinates allow
to compute a wide variety of observables,
<!-- at the side of the electrons -->e.g. <font color="#ff0000">
optical absorption spectra</font> [<a href="../literatur.html#own1155">9</a>],
<font color="#ff0000"> angular distributions</font> [<a href="../literatur.html#own1288">313</a>],
<font color="#ff0000"> emission spectra</font> [<a href="../literatur.html#own1285">304</a>],
or <font color="#ff0000"> ionization</font> [<a href="../literatur.html#own1186">208</a>]
for electronic degrees of freedom. The <font color="#00b300">
ionic configurations</font> can be measured indirectly
through optical response and its dynamics with various pump
and probe scenarios [<a href="../literatur.html#own1246">290</a>].
</p>
<p></p>
<p> Often, we use a <font color="#ff0000"> semi-classical
description for the electronic dynamics</font> at the level
of Vlasov-LDA, particularly for energetic processes and/or
large clusters. Instead of the <font color="#ff0000">
wavefunctions</font>, the key ingredient becomes here the <font
color="#ff0000">
one-electron phase-space distribution <font color="#ff0000"><!-- MATH
$f({r},{p},t)$ --> <img src="img17.png" alt="\bgroup\color{red}$ f({r},{p},t)$\egroup"
width="71"
border="0"
align="MIDDLE"
height="37" /></font></font>.
The quantum-mechanical propagation for the electrons is
replaced by the Vlasov equation
<!-- MATH
\begin{displaymath}{\color{red} \partial_t f = \frac{{p}}{m}\nabla_{r}f - \Big( \nabla_{r}\frac{\delta E_{\rm total}}{\delta\rho_{\sigma_\alpha}} \Big) \nabla_{p}f }\end{displaymath} -->
</p>
<p></p>
<div align="CENTER"> <img src="img18.png" alt="\bgroup\color{red}$\displaystyle {\color{red} \partial_t f= \frac{{p}}{m}\nabl......{\delta E_{\rm total}}{\delta\rho_{\sigma_\alpha}} \Big)\nabla_{p}f }$\egroup"
width="270"
border="0"
align="MIDDLE"
height="61" />
</div>
<p></p>
<p> again non-adiabatically coupled to ionic motion as above.
Note that formally the same Kohn-Sham potential <font color="#ff0000"><!-- MATH
${\color{red} {\delta E_{\rm total}}\big/{\delta\rho_{\sigma_\alpha}}}$ --> <img
src="img19.png"
alt="\bgroup\color{red}$ {\color{red} {\delta E_{\rm total}}\big/{\delta\rho_{\sigma_\alpha}}}$\egroup"
width="102"
border="0"
align="MIDDLE"
height="41" /></font>
is employed. For a derivation and justification from TDLDA see
[<a href="../literatur.html#own1163">182</a>]. The Vlasov-LDA
equation is solved with the test-particle method where the
distribution function <font color="#ff0000"><!-- MATH
${\color{red} f}$ --> <img src="img20.png" alt="\bgroup\color{red}$ {\color{red} f}$\egroup"
width="16"
border="0"
align="MIDDLE"
height="35" /></font>
is represented as a sum of Gaussian test-particles which are
propagated again by the Verlet algorithm [<a href="../literatur.html#own1248">273</a>].
</p>
<p> The semi-classical description makes it feasible to include
dynamical correlations from electron-electron collisions. This
is achieved by adding an Uehling-Uhlenbeck collision term
leading to
<!-- MATH
\begin{displaymath}{\color{red} \partial_t f = \frac{{p}}{m}\nabla_{r}f - \Big( \nabla_{r}\frac{\delta E_{\rm total}}{\delta\rho_{\sigma_\alpha}} \Big) \nabla_{p}f + I_{\rm UU}(f) } \quad.\end{displaymath} -->
</p>
<p></p>
<div align="CENTER"> <img src="img21.png" alt="\bgroup\color{red}$\displaystyle {\color{red} \partial_t f= \frac{{p}}{m}\nabl......\delta\rho_{\sigma_\alpha}} \Big)\nabla_{p}f +I_{\rm UU}(f) }\quad. $\egroup"
width="372"
border="0"
align="MIDDLE"
height="61" />
</div>
<p> The collision term <font color="#ff0000"><!-- MATH
${\color{red} I_{\rm UU}}$ --> <img src="img22.png" alt="\bgroup\color{red}$ {\color{red} I_{\rm UU}}$\egroup"
width="34"
border="0"
align="MIDDLE"
height="35" /></font>
is a non-linear functional of the distribution function <font
color="#ff0000"><!-- MATH
${\color{red} f}$ --> <img src="img20.png" alt="\bgroup\color{red}$ {\color{red} f}$\egroup"
width="16"
border="0"
align="MIDDLE"
height="35" /></font>.
It contains terms up to third power in <font color="#ff0000"><!-- MATH
${\color{red} f}$ --> <img src="img20.png" alt="\bgroup\color{red}$ {\color{red} f}$\egroup"
width="16"
border="0"
align="MIDDLE"
height="35" /></font>.
It is constructed from local and instantaneous collisions
which obey energy conservation, momentum conservation, and the
Pauli principle [<a href="../literatur.html#own1248">273</a>].
The resulting equation is called the Vlasov-Uehling-Uhlenbeck
approach (VUU). </p>
<p> </p>
<center>
<table width="70%">
<tbody>
<tr>
<td align="right"> <a href="#top">Back to top </a> </td>
</tr>
</tbody>
</table>
</center>
<!-- <HR> -->
<!--Table of Child-Links--> <a name="CHILD_LINKS"></a>
<!--End of Table of Child-Links-->
<!-- <HR>
<ADDRESS>Paul-Gerhard Reinhard2006-03-18</ADDRESS> -->
<!-- START CONTENT HERE --> </div>
</div>
</div>
</div>
<div id="footer">
<p></p>
</div>
</div>
</div>
</body>
</html>