New_Website/tddft-md/formal.html

8 lines
18 KiB
HTML
Raw Normal View History

2018-03-20 14:44:50 +01:00
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta http-equiv="content-type" content="application/xhtml+xml; charset=iso-8859-1" /> <title>Theory of Cluster Dynamics</title> <link href="../style.css" rel="stylesheet" type="text/css" /> </head> <body> <div id="container"> <div id="header"> <div id="menu"> <div id="navMenu"> <ul> <li style="margin-top:1px;border-top:1px solid #B0C4DE; "><a href="../index.html">Home</a></li> <li><a href="../intro.html">Introductory Overview</a></li> <li><a href="../research.html">Scientific Information</a></li> <li><a href="../staff.html">Staff</a></li> <li><a href="../publications.html">Publications/Talks</a></li> <li><a href="../contact.html">Contact</a></li> </ul> </div> </div> <div id="image"> <p><font size="6" color="white"><b>Theory of Cluster Dynamics</b></font><font size="5"><br /> </font><font size="6"> </font><font size="5">The Toulouse - Erlangen Collaboration</font></p> </div> <div id="content"> <a name="oben"> </a> <div style="margin:15px;width:770px;border:1px solid gray;float:left;font-size:10px;"><a name="oben"> </a> <div style="width:180px;float:left;text-align:center;font-size:12px"><a name="oben"> </a><a href="formal.html">1. Theoretical developments </a> </div> <div style="width:200px;float:left;text-align:center;font-size:10px;"> <a href="../analysis/detail1.html"> 2. Analysis of cluster dynamics </a> </div> <div style="width:200px;float:left;text-align:center;font-weight:900;font-size:10px;"> <a href="../analysis/detail2.html"> 3. Clusters in strong external fields </a> </div> <div style="width:180px;float:left;text-align:center;font-weight:900;font-size:10px;"> <a href="detailQMMM.html"> 4. Embedded clusters </a> </div> </div> <div id="WideContent"> <div id="contentBoxWide"> <div id="contentBoxHeader"> <p>Time Dependent Density Functional Theory with Molecular Dynamics </p> </div> <div id="contentBoxContent"> <p> </p> <div align="CENTER"> <font size="+2"><b> TDLDA-MD:</b></font> <br /> <br /> <font size="+1"><b>Time-dependent local-density approximation plus ionic molecular dynamics</b></font> <br /> </div> <p> (<em>This is a very short summary of our formal scheme. A most detailed description is found in </em>[<a href="../literatur.html#own1281">303</a>].)
2018-03-22 14:08:37 +01:00
</p> <p> The <font color="#ff0000"> electron cloud</font> is described by density functional theory at the level of TDLDA. The dynamical degrees of freedom are the set of occupied <font color="#ff0000"> single-electron wavefunctions <font color="#ff0000"><!-- MATH $\varphi_\alpha$ --> <img src="img1.png" alt="\bgroup\color{red}$ \varphi_\alpha$\egroup" width="26" border="0" align="MIDDLE" height="33" /></font></font>. The <font color="#00b300"> ions</font> are treated by classical MD and their degrees of freedom are the <font color="#00b300"> positions <i><b>R<sub>I</sub></b></i> and momenta <i><b>P<sub>I</sub></b></i> <font color="#00b300"><!-- MATH $({R}_I,{P}_I)$ --> <!-- <IMG WIDTH="69" HEIGHT="37" ALIGN="MIDDLE" BORDER="0" SRC="img2.png" ALT="\bgroup\color{dgreen}$ ({R}_I,{P}_I)$\egroup"></FONT></FONT>.--></font></font>. The starting point is the total energy given by: <br /> </p> <div align="CENTER"> <!-- MATH \begin{eqnarray*}E_{\rm total} &=& {\color{red} E_{\rm kin}(\{\varphi_\alpha\}) + E_{\rm C}(\rho) + E_{\rm xc}^{\rm (LDA)}(\rho_\uparrow,\rho_\downarrow) } + E_{\rm el,ion}({\color{red} \rho},{\color{dgreen} \{{R}_I\}}) + {\color{dgreen} E_{\rm ion}(\{{R}_I,{P}_I\})} + E_{\rm ext}({\color{red} \rho},{\color{dgreen} {R}_I},t) \quad.\end{eqnarray*} --> <table width="100%" cellpadding="0" align="CENTER"> <tbody> <tr valign="MIDDLE"> <td nowrap="nowrap" align="RIGHT"><img src="img3.png" alt="$\displaystyle E_{\rm total}$" width="47" border="0" align="MIDDLE" height="35" /></td> <td nowrap="nowrap" width="10" align="CENTER"><img src="img4.png" alt="$\displaystyle =$" width="19" border="0" align="MIDDLE" height="33" /></td> <td nowrap="nowrap" align="LEFT"><img src="img5.png" alt="$\displaystyle {\color{red} E_{\rm kin}(\{\varphi_\alpha\})+ E_{\rm C}(\rho)+ ......}_I,{P}_I\})} +E_{\rm ext}({\color{red} \rho},{\color{dgreen} {R}_I},t) \quad.$" width="690" border="0" align="MIDDLE" height="43" /></td> <td width="10" align="RIGHT"> </td> </tr> </tbody> </table> </div> <br clear="ALL" /> <p> The electronic kinetic energy <font color="#00b300"><!-- MATH ${\color{red} E_{\rm kin}}$ --> <img src="img6.png" alt="\bgroup\color{dgreen}$ {\color{red} E_{\rm kin}}$\egroup" width="37" border="0" align="MIDDLE" height="35" /></font> employs the single-electron wavefunctions <font color="#00b300"><!-- MATH ${\color{red} \varphi_\alpha}$ --> <img src="img7.png" alt="\bgroup\color{dgreen}$ {\color{red} \varphi_\alpha}$\egroup" width="26" border="0" align="MIDDLE" height="33" /></font> which maintains the quantum mechanical shell effects. All other electronic energies refer only to the local spin-densities or total density <!-- MATH ${\color{red} \rho=\rho_\uparrow+\rho_\downarrow}$ --> <img src="img8.png" alt="\bgroup\color{dgreen}$ {\color{red} \rho=\rho_\uparrow+\rh
2018-03-20 14:44:50 +01:00
The electron-ion coupling <font color="#00b300"><!-- MATH $E_{\rm el,ion}$ --> <img src="img11.png" alt="\bgroup\color{dgreen}$ E_{\rm el,ion}$\egroup" width="51" border="0" align="MIDDLE" height="35" /></font> is realized by pseudo-potentials, mostly soft local ones <a href="../literatur.html#own1216">[249]</a>. The ionic part <font color="#00b300"><!-- MATH ${\color{dgreen} E_{\rm ion}}$ --> <img src="img12.png" alt="\bgroup\color{dgreen}$ {\color{dgreen} E_{\rm ion}}$\egroup" width="37" border="0" align="MIDDLE" height="35" /></font> is composed of Coulomb interaction and kinetic energy. Excitation mechanisms (laser, ionic collisions) are described in <font color="#00b300"><!-- MATH $E_{\rm ext}$ --> <img src="img13.png" alt="\bgroup\color{dgreen}$ E_{\rm ext}$\egroup" width="37" border="0" align="MIDDLE" height="35" /></font> as external time-dependent potentials. </p> <p> The coupled equations of motion are obtained in standard manner by variation. They read <!-- MATH \begin{displaymath}{\color{red} \imath\partial_t\varphi_\alpha = \Big(\frac{\hat{p}^2}{2m} + \frac{\delta E_{\rm total}}{\delta\rho_{\sigma_\alpha}}\Big) \varphi_\alpha } \qquad,\qquad {\color{dgreen} \partial_t{R}_I = \frac{{P}_I}{M_I} \quad,\quad \partial_t{P}_I = -\nabla_{{R}_I}E_{\rm total}} \quad.\end{displaymath} --> </p> <p></p> <div align="CENTER"> <img src="img14.png" alt="\bgroup\color{dgreen}$\displaystyle {\color{red} \imath\partial_t\varphi_\alpha......M_I} \quad,\quad\partial_t{P}_I =-\nabla_{{R}_I}E_{\rm total}} \quad.$\egroup" width="618" border="0" align="MIDDLE" height="65" /> </div> <p> where <font color="#00b300"><!-- MATH ${\color{red} \sigma_\alpha}$ --> <img src="img15.png" alt="\bgroup\color{dgreen}$ {\color{red} \sigma_\alpha}$\egroup" width="24" border="0" align="MIDDLE" height="33" /></font> is the spin orientation of the state <font color="#00b300"><!-- MATH ${\color{red} \alpha}$ --> <img src="img16.png" alt="\bgroup\color{dgreen}$ {\color{red} \alpha}$\egroup" width="16" border="0" align="BOTTOM" height="19" /></font>. The equations imply a non-adiabatic coupling which goes beyond usual Born-Oppenheimer approach. Non-adiabatic effects become crucial in cluster dynamics induced by strong fields. The numerical solution involves the representation of the wavefunctions on a spatial grid, time-splitting for the electronic propagation and the Verlet algorithm for MD, for details see [<a href="../literatur.html#own1230">254</a>]. The obtained wavefunctions, densities, and ionic coordinates allow to compute a wide variety of observables, <!-- at the side of the electrons -->e.g. <font color="#ff0000"> optical absorption spectra</font> [<a href="../literatur.html#own1155">9</a>],
<font color="#ff0000"> angular distributions</font> [<a href="../literatur.html#own1288">313</a>],
<font color="#ff0000"> emission spectra</font> [<a href="../literatur.html#own1285">304</a>],
or <font color="#ff0000"> ionization</font> [<a href="../literatur.html#own1186">208</a>] for electronic degrees of freedom. The <font color="#00b300"> ionic configurations</font> can be measured indirectly through optical response and its dynamics with various pump and probe scenarios [<a href="../literatur.html#own1246">290</a>].
</p> <p></p> <p> Often, we use a <font color="#ff0000"> semi-classical description for the electronic dynamics</font> at the level of Vlasov-LDA, particularly for energetic processes and/or large clusters. Instead of the <font color="#ff0000"> wavefunctions</font>, the key ingredient becomes here the <font color="#ff0000"> one-electron phase-space distribution <font color="#ff0000"><!-- MATH $f({r},{p},t)$ --> <img src="img17.png" alt="\bgroup\color{red}$ f({r},{p},t)$\egroup" width="71" border="0" align="MIDDLE" height="37" /></font></font>. The quantum-mechanical propagation for the electrons is replaced by the Vlasov equation <!-- MATH \begin{displaymath}{\color{red} \partial_t f = \frac{{p}}{m}\nabla_{r}f - \Big( \nabla_{r}\frac{\delta E_{\rm total}}{\delta\rho_{\sigma_\alpha}} \Big) \nabla_{p}f }\end{displaymath} --> </p> <p></p> <div align="CENTER"> <img src="img18.png" alt="\bgroup\color{red}$\displaystyle {\color{red} \partial_t f= \frac{{p}}{m}\nabl......{\delta E_{\rm total}}{\delta\rho_{\sigma_\alpha}} \Big)\nabla_{p}f }$\egroup" width="270" border="0" align="MIDDLE" height="61" /> </div> <p></p> <p> again non-adiabatically coupled to ionic motion as above. Note that formally the same Kohn-Sham potential <font color="#ff0000"><!-- MATH ${\color{red} {\delta E_{\rm total}}\big/{\delta\rho_{\sigma_\alpha}}}$ --> <img src="img19.png" alt="\bgroup\color{red}$ {\color{red} {\delta E_{\rm total}}\big/{\delta\rho_{\sigma_\alpha}}}$\egroup" width="102" border="0" align="MIDDLE" height="41" /></font> is employed. For a derivation and justification from TDLDA see [<a href="../literatur.html#own1163">182</a>]. The Vlasov-LDA equation is solved with the test-particle method where the distribution function <font color="#ff0000"><!-- MATH ${\color{red} f}$ --> <img src="img20.png" alt="\bgroup\color{red}$ {\color{red} f}$\egroup" width="16" border="0" align="MIDDLE" height="35" /></font> is represented as a sum of Gaussian test-particles which are propagated again by the Verlet algorithm [<a href="../literatur.html#own1248">273</a>].
2018-03-22 14:08:37 +01:00
</p> <p> The semi-classical description makes it feasible to include dynamical correlations from electron-electron collisions. This is achieved by adding an Uehling-Uhlenbeck collision term leading to <!-- MATH \begin{displaymath}{\color{red} \partial_t f = \frac{{p}}{m}\nabla_{r}f - \Big( \nabla_{r}\frac{\delta E_{\rm total}}{\delta\rho_{\sigma_\alpha}} \Big) \nabla_{p}f + I_{\rm UU}(f) } \quad.\end{displaymath} --> </p> <p></p> <div align="CENTER"> <img src="img21.png" alt="\bgroup\color{red}$\displaystyle {\color{red} \partial_t f= \frac{{p}}{m}\nabl......\delta\rho_{\sigma_\alpha}} \Big)\nabla_{p}f +I_{\rm UU}(f) }\quad. $\egroup" width="372" border="0" align="MIDDLE" height="61" /> </div> <p> The collision term <font color="#ff0000"><!-- MATH ${\color{red} I_{\rm UU}}$ --> <img src="img22.png" alt="\bgroup\color{red}$ {\color{red} I_{\rm UU}}$\egroup" width="34" border="0" align="MIDDLE" height="35" /></font> is a non-linear functional of the distribution function <font color="#ff0000"><!-- MATH ${\color{red} f}$ --> <img src="img20.png" alt="\bgroup\color{red}$ {\color{red} f}$\egroup" width="16" border="0" align="MIDDLE" height="35" /></font>. It contains terms up to third power in <font color="#ff0000"><!-- MATH ${\color{red} f}$ --> <img src="img20.png" alt="\bgroup\color{red}$ {\color{red} f}$\egroup" width="16" border="0" align="MIDDLE" height="35" /></font>. It is constructed from local and instantaneous collisions which obey energy conservation, momentum conservation, and the Pauli principle [<a href="../literatur.html#own1248">273</a>]. The resulting equation is called the Vlasov-Uehling-Uhlenbeck approach (VUU). </p> <p> </p> <center> <table width="70%"> <tbody> <tr> <td align="right"> <a href="#top">Back to top </a> </td> </tr> </tbody> </table> </center> <!-- <HR> --> <!--Table of Child-Links--> <a name="CHILD_LINKS"></a> <!--End of Table of Child-Links--> <!-- <HR> <ADDRESS>Paul-Gerhard Reinhard2006-03-18</ADDRESS> --> <!-- START CONTENT HERE --> </div> </div> </div> </div> <div id="footer"> <p></p> </div> </div> </div> </body> </html>