diff --git a/QMC.org b/QMC.org index 63cd513..aab007d 100644 --- a/QMC.org +++ b/QMC.org @@ -90,9 +90,14 @@ :header-args:python: :tangle hydrogen.py :header-args:f90: :tangle hydrogen.f90 :END: -*** Write a function which computes the potential at $\mathbf{r}$ + +*** Exercise 1 + + #+begin_exercise + Write a function which computes the potential at $\mathbf{r}$. The function accepts a 3-dimensional vector =r= as input arguments and returns the potential. + #+end_exercise $\mathbf{r}=\left( \begin{array}{c} x \\ y\\ z\end{array} \right)$, so $$ @@ -117,9 +122,12 @@ double precision function potential(r) end function potential #+END_SRC -*** Write a function which computes the wave function at $\mathbf{r}$ +*** Exercise 2 + #+begin_exercise + Write a function which computes the wave function at $\mathbf{r}$. The function accepts a scalar =a= and a 3-dimensional vector =r= as input arguments, and returns a scalar. + #+end_exercise *Python* @@ -137,9 +145,12 @@ double precision function psi(a, r) end function psi #+END_SRC -*** Write a function which computes the local kinetic energy at $\mathbf{r}$ +*** Exercise 3 + #+begin_exercise + Write a function which computes the local kinetic energy at $\mathbf{r}$. The function accepts =a= and =r= as input arguments and returns the local kinetic energy. + #+end_exercise The local kinetic energy is defined as $$-\frac{1}{2}\frac{\Delta \Psi}{\Psi}.$$ @@ -187,9 +198,12 @@ double precision function kinetic(a,r) end function kinetic #+END_SRC -*** Write a function which computes the local energy at $\mathbf{r}$ +*** Exercise 4 + #+begin_exercise + Write a function which computes the local energy at $\mathbf{r}$. The function accepts =x,y,z= as input arguments and returns the local energy. + #+end_exercise $$ E_L(\mathbf{r}) = -\frac{1}{2} \frac{\Delta \Psi}{\Psi} (\mathbf{r}) + V(\mathbf{r}) @@ -218,11 +232,15 @@ end function e_loc :header-args:f90: :tangle plot_hydrogen.f90 :END: - For multiple values of $a$ (0.1, 0.2, 0.5, 1., 1.5, 2.), plot the - local energy along the $x$ axis. + +*** Exercise + #+begin_exercise + For multiple values of $a$ (0.1, 0.2, 0.5, 1., 1.5, 2.), plot the + local energy along the $x$ axis. + #+end_exercise - *Python* - #+BEGIN_SRC python :results none + *Python* + #+BEGIN_SRC python :results none import numpy as np import matplotlib.pyplot as plt @@ -244,16 +262,16 @@ plt.tight_layout() plt.legend() plt.savefig("plot_py.png") - #+end_src + #+end_src - #+RESULTS: + #+RESULTS: - [[./plot_py.png]] + [[./plot_py.png]] - *Fortran* - #+begin_src f90 + *Fortran* + #+begin_src f90 program plot implicit none double precision, external :: e_loc @@ -282,20 +300,20 @@ program plot end do end program plot - #+end_src + #+end_src - To compile and run: + To compile and run: - #+begin_src sh :exports both + #+begin_src sh :exports both gfortran hydrogen.f90 plot_hydrogen.f90 -o plot_hydrogen ./plot_hydrogen > data - #+end_src + #+end_src - #+RESULTS: + #+RESULTS: - To plot the data using gnuplot: + To plot the data using gnuplot: - #+begin_src gnuplot :file plot.png :exports both + #+begin_src gnuplot :file plot.png :exports both set grid set xrange [-5:5] set yrange [-2:1] @@ -305,12 +323,12 @@ plot './data' index 0 using 1:2 with lines title 'a=0.1', \ './data' index 3 using 1:2 with lines title 'a=1.0', \ './data' index 4 using 1:2 with lines title 'a=1.5', \ './data' index 5 using 1:2 with lines title 'a=2.0' - #+end_src + #+end_src - #+RESULTS: - [[file:plot.png]] + #+RESULTS: + [[file:plot.png]] -** Compute numerically the expectation value of the energy +** Numerical estimation of the energy :PROPERTIES: :header-args:python: :tangle energy_hydrogen.py :header-args:f90: :tangle energy_hydrogen.f90 @@ -327,18 +345,22 @@ plot './data' index 0 using 1:2 with lines title 'a=0.1', \ w_i = \left[\Psi(\mathbf{r}_i)\right]^2 \delta \mathbf{r} $$ - In this section, we will compute a numerical estimate of the - energy in a grid of $50\times50\times50$ points in the range - $(-5,-5,-5) \le \mathbf{r} \le (5,5,5)$. - #+begin_note The energy is biased because: - The volume elements are not infinitely small (discretization error) - The energy is evaluated only inside the box (incompleteness of the space) #+end_note - *Python* - #+BEGIN_SRC python :results none + +*** Exercise + #+begin_exercise + Compute a numerical estimate of the energy in a grid of + $50\times50\times50$ points in the range $(-5,-5,-5) \le + \mathbf{r} \le (5,5,5)$. + #+end_exercise + + *Python* + #+BEGIN_SRC python :results none import numpy as np from hydrogen import e_loc, psi @@ -363,19 +385,19 @@ for a in [0.1, 0.2, 0.5, 0.9, 1., 1.5, 2.]: E = E / norm print(f"a = {a} \t E = {E}") - #+end_src + #+end_src - #+RESULTS: - : a = 0.1 E = -0.24518438948809218 - : a = 0.2 E = -0.26966057967803525 - : a = 0.5 E = -0.3856357612517407 - : a = 0.9 E = -0.49435709786716214 - : a = 1.0 E = -0.5 - : a = 1.5 E = -0.39242967082602226 - : a = 2.0 E = -0.08086980667844901 + #+RESULTS: + : a = 0.1 E = -0.24518438948809218 + : a = 0.2 E = -0.26966057967803525 + : a = 0.5 E = -0.3856357612517407 + : a = 0.9 E = -0.49435709786716214 + : a = 1.0 E = -0.5 + : a = 1.5 E = -0.39242967082602226 + : a = 2.0 E = -0.08086980667844901 - *Fortran* - #+begin_src f90 + *Fortran* + #+begin_src f90 program energy_hydrogen implicit none double precision, external :: e_loc, psi @@ -414,24 +436,24 @@ program energy_hydrogen end do end program energy_hydrogen - #+end_src + #+end_src - To compile the Fortran and run it: + To compile the Fortran and run it: - #+begin_src sh :results output :exports both + #+begin_src sh :results output :exports both gfortran hydrogen.f90 energy_hydrogen.f90 -o energy_hydrogen ./energy_hydrogen - #+end_src + #+end_src - #+RESULTS: - : a = 0.10000000000000001 E = -0.24518438948809140 - : a = 0.20000000000000001 E = -0.26966057967803236 - : a = 0.50000000000000000 E = -0.38563576125173815 - : a = 1.0000000000000000 E = -0.50000000000000000 - : a = 1.5000000000000000 E = -0.39242967082602065 - : a = 2.0000000000000000 E = -8.0869806678448772E-002 + #+RESULTS: + : a = 0.10000000000000001 E = -0.24518438948809140 + : a = 0.20000000000000001 E = -0.26966057967803236 + : a = 0.50000000000000000 E = -0.38563576125173815 + : a = 1.0000000000000000 E = -0.50000000000000000 + : a = 1.5000000000000000 E = -0.39242967082602065 + : a = 2.0000000000000000 E = -8.0869806678448772E-002 -** Compute the variance of the local energy +** Variance of the local energy :PROPERTIES: :header-args:python: :tangle variance_hydrogen.py :header-args:f90: :tangle variance_hydrogen.f90 @@ -450,8 +472,13 @@ gfortran hydrogen.f90 energy_hydrogen.f90 -o energy_hydrogen $\hat{H}$) the variance is zero, so the variance of the local energy can be used as a measure of the quality of a wave function. +*** Exercise + #+begin_exercise Compute a numerical estimate of the variance of the local energy - in a grid of $50\times50\times50$ points in the range $(-5,-5,-5) \le \mathbf{r} \le (5,5,5)$. + in a grid of $50\times50\times50$ points in the range + $(-5,-5,-5) + \le \mathbf{r} \le (5,5,5)$ for different values of $a$. + #+end_exercise *Python* #+begin_src python :results none @@ -617,8 +644,11 @@ gfortran hydrogen.f90 variance_hydrogen.f90 -o variance_hydrogen E \pm \delta E, \text{ where } \delta E = \frac{\sigma}{\sqrt{M}} $$ +*** Exercise + #+begin_exercise Write a function returning the average and statistical error of an input array. + #+end_exercise *Python* #+BEGIN_SRC python :results none @@ -656,26 +686,38 @@ end subroutine ave_error :header-args:f90: :tangle qmc_uniform.f90 :END: - In this section we write a function to perform a Monte Carlo - calculation of the average energy. + We will now do our first Monte Carlo calculation to compute the + energy of the hydrogen atom. + At every Monte Carlo step: - - Draw 3 uniform random numbers in the interval $(-5,-5,-5) \le + - Draw a random point $\mathbf{r}_i$ in the box $(-5,-5,-5) \le (x,y,z) \le (5,5,5)$ - - Compute $\Psi^2 \times E_L$ at this point and accumulate the - result in E - - Compute $\Psi^2$ at this point and accumulate the result in N + - Compute $[\Psi(\mathbf{r}_i)]^2$ and accumulate the result in a + variable =normalization= + - Compute $[\Psi(\mathbf{r}_i)]^2 \times E_L(\mathbf{r}_i)$, and accumulate the + result in a variable =energy= - Once all the steps have been computed, return the average energy - computed on the Monte Carlo calculation. + One Monte Carlo run will consist of $N$ Monte Carlo steps. Once all the + steps have been computed, the run returns the average energy + $\bar{E}_k$ over the $N$ steps of the run. - In the main program, write a loop to perform 30 Monte Carlo runs, - and compute the average energy and the associated statistical error. + To compute the statistical error, perform $M$ runs. The final + estimate of the energy will be the average over the $\bar{E}_k$, + and the variance of the $\bar{E}_k$ will be used to compute the + statistical error. + +*** Exercise - Compute the energy of the wave function with $a=0.9$. + #+begin_exercise + Parameterize the wave function with $a=0.9$. Perform 30 + independent Monte Carlo runs, each with 100 000 Monte Carlo + steps. Store the final energies of each run and use this array to + compute the average energy and the associated error bar. + #+end_exercise - *Python* - #+BEGIN_SRC python :results output + *Python* + #+BEGIN_SRC python :results output from hydrogen import * from qmc_stats import * @@ -695,13 +737,13 @@ nmax = 100000 X = [MonteCarlo(a,nmax) for i in range(30)] E, deltaE = ave_error(X) print(f"E = {E} +/- {deltaE}") - #+END_SRC + #+END_SRC - #+RESULTS: - : E = -0.4956255109300764 +/- 0.0007082875482711226 + #+RESULTS: + : E = -0.4956255109300764 +/- 0.0007082875482711226 - *Fortran* - #+BEGIN_SRC f90 + *Fortran* + #+BEGIN_SRC f90 subroutine uniform_montecarlo(a,nmax,energy) implicit none double precision, intent(in) :: a @@ -743,15 +785,15 @@ program qmc call ave_error(X,nruns,ave,err) print *, 'E = ', ave, '+/-', err end program qmc - #+END_SRC + #+END_SRC - #+begin_src sh :results output :exports both + #+begin_src sh :results output :exports both gfortran hydrogen.f90 qmc_stats.f90 qmc_uniform.f90 -o qmc_uniform ./qmc_uniform - #+end_src + #+end_src - #+RESULTS: - : E = -0.49588321986667677 +/- 7.1758863546737969E-004 + #+RESULTS: + : E = -0.49588321986667677 +/- 7.1758863546737969E-004 ** Gaussian sampling :PROPERTIES: @@ -773,6 +815,9 @@ gfortran hydrogen.f90 qmc_stats.f90 qmc_uniform.f90 -o qmc_uniform z_2 &=& \sqrt{-2 \ln u_1} \sin(2 \pi u_2) \end{eqnarray*} + Here is a Fortran implementation returning a Gaussian-distributed + n-dimensional vector $\mathbf{z}$; + *Fortran* #+BEGIN_SRC f90 :tangle qmc_stats.f90 subroutine random_gauss(z,n) @@ -805,14 +850,16 @@ end subroutine random_gauss #+END_SRC - Now the equation for the energy is changed into + Now the sampling probability can be inserted into the equation of the energy: \[ E = \frac{\int P(\mathbf{r}) \frac{\left[\Psi(\mathbf{r})\right]^2}{P(\mathbf{r})}\, \frac{\hat{H} \Psi(\mathbf{r})}{\Psi(\mathbf{r})}\,d\mathbf{r}}{\int P(\mathbf{r}) \frac{\left[\Psi(\mathbf{r}) \right]^2}{P(\mathbf{r})} d\mathbf{r}} \] - with + + with the Gaussian probability + \[ - P(\mathbf{r}) = \frac{1}{(2 \pi)^{3/2}}\exp\left( -\frac{\mathbf{r}^2}{2} \right) + P(\mathbf{r}) = \frac{1}{(2 \pi)^{3/2}}\exp\left( -\frac{\mathbf{r}^2}{2} \right). \] As the coordinates are drawn with probability $P(\mathbf{r})$, the @@ -823,8 +870,17 @@ end subroutine random_gauss w_i = \frac{\left[\Psi(\mathbf{r}_i)\right]^2}{P(\mathbf{r}_i)} \delta \mathbf{r} $$ - *Python* - #+BEGIN_SRC python :results output + +*** Exercise + + #+begin_exercise + Modify the exercise of the previous section to sample with + Gaussian-distributed random numbers. Can you see an reduction in + the statistical error? + #+end_exercise + + *Python* + #+BEGIN_SRC python :results output from hydrogen import * from qmc_stats import * @@ -848,14 +904,14 @@ nmax = 100000 X = [MonteCarlo(a,nmax) for i in range(30)] E, deltaE = ave_error(X) print(f"E = {E} +/- {deltaE}") - #+END_SRC + #+END_SRC - #+RESULTS: - : E = -0.49507506093129827 +/- 0.00014164037765553668 + #+RESULTS: + : E = -0.49507506093129827 +/- 0.00014164037765553668 - *Fortran* - #+BEGIN_SRC f90 + *Fortran* + #+BEGIN_SRC f90 double precision function gaussian(r) implicit none double precision, intent(in) :: r(3) @@ -904,15 +960,15 @@ program qmc call ave_error(X,nruns,ave,err) print *, 'E = ', ave, '+/-', err end program qmc - #+END_SRC + #+END_SRC - #+begin_src sh :results output :exports both + #+begin_src sh :results output :exports both gfortran hydrogen.f90 qmc_stats.f90 qmc_gaussian.f90 -o qmc_gaussian ./qmc_gaussian - #+end_src + #+end_src - #+RESULTS: - : E = -0.49606057056767766 +/- 1.3918807547836872E-004 + #+RESULTS: + : E = -0.49606057056767766 +/- 1.3918807547836872E-004 ** Sampling with $\Psi^2$ :PROPERTIES: @@ -933,88 +989,105 @@ gfortran hydrogen.f90 qmc_stats.f90 qmc_gaussian.f90 -o qmc_gaussian E \approx \frac{1}{M}\sum_{i=1}^M E_L(\mathbf{r}_i) $$ - To generate the probability density $\Psi^2$, we consider a - diffusion process characterized by a time-dependent density - $[\Psi(\mathbf{r},t)]^2$, which obeys the Fokker-Planck equation: - - \[ - \frac{\partial \Psi^2}{\partial t} = \sum_i D - \frac{\partial}{\partial \mathbf{r}_i} \left( - \frac{\partial}{\partial \mathbf{r}_i} - F_i(\mathbf{r}) \right) - [\Psi(\mathbf{r},t)]^2. - \] - $D$ is the diffusion constant and $F_i$ is the i-th component of a - drift velocity caused by an external potential. For a stationary - density, \( \frac{\partial \Psi^2}{\partial t} = 0 \), so +*** Importance sampling - \begin{eqnarray*} - 0 & = & \sum_i D - \frac{\partial}{\partial \mathbf{r}_i} \left( - \frac{\partial}{\partial \mathbf{r}_i} - F_i(\mathbf{r}) \right) - [\Psi(\mathbf{r})]^2 \\ - 0 & = & \sum_i D - \frac{\partial}{\partial \mathbf{r}_i} \left( - \frac{\partial [\Psi(\mathbf{r})]^2}{\partial \mathbf{r}_i} - - F_i(\mathbf{r})\,[\Psi(\mathbf{r})]^2 \right) \\ - 0 & = & - \frac{\partial^2 \Psi^2}{\partial \mathbf{r}_i^2} - - \frac{\partial F_i }{\partial \mathbf{r}_i}[\Psi(\mathbf{r})]^2 - - \frac{\partial \Psi^2}{\partial \mathbf{r}_i} F_i(\mathbf{r}) - \end{eqnarray*} + To generate the probability density $\Psi^2$, we consider a + diffusion process characterized by a time-dependent density + $[\Psi(\mathbf{r},t)]^2$, which obeys the Fokker-Planck equation: - we search for a drift function which satisfies - - \[ - \frac{\partial^2 \Psi^2}{\partial \mathbf{r}_i^2} = - [\Psi(\mathbf{r})]^2 \frac{\partial F_i }{\partial \mathbf{r}_i} + - \frac{\partial \Psi^2}{\partial \mathbf{r}_i} F_i(\mathbf{r}) - \] - - to obtain a second derivative on the left, we need the drift to be - of the form - \[ - F_i(\mathbf{r}) = g(\mathbf{r}) \frac{\partial \Psi^2}{\partial \mathbf{r}_i} - \] - - \[ - \frac{\partial^2 \Psi^2}{\partial \mathbf{r}_i^2} = - [\Psi(\mathbf{r})]^2 \frac{\partial - g(\mathbf{r})}{\partial \mathbf{r}_i}\frac{\partial \Psi^2}{\partial \mathbf{r}_i} + - [\Psi(\mathbf{r})]^2 g(\mathbf{r}) \frac{\partial^2 - \Psi^2}{\partial \mathbf{r}_i^2} + - \frac{\partial \Psi^2}{\partial \mathbf{r}_i} - g(\mathbf{r}) \frac{\partial \Psi^2}{\partial \mathbf{r}_i} - \] + \[ + \frac{\partial \Psi^2}{\partial t} = \sum_i D + \frac{\partial}{\partial \mathbf{r}_i} \left( + \frac{\partial}{\partial \mathbf{r}_i} - F_i(\mathbf{r}) \right) + [\Psi(\mathbf{r},t)]^2. + \] - $g = 1 / \Psi^2$ satisfies this equation, so + $D$ is the diffusion constant and $F_i$ is the i-th component of a + drift velocity caused by an external potential. For a stationary + density, \( \frac{\partial \Psi^2}{\partial t} = 0 \), so - \[ - F(\mathbf{r}) = \frac{\nabla [\Psi(\mathbf{r})]^2}{[\Psi(\mathbf{r})]^2} = 2 \frac{\nabla - \Psi(\mathbf{r})}{\Psi(\mathbf{r})} = 2 \nabla \left( \log \Psi(\mathbf{r}) \right) - \] + \begin{eqnarray*} + 0 & = & \sum_i D + \frac{\partial}{\partial \mathbf{r}_i} \left( + \frac{\partial}{\partial \mathbf{r}_i} - F_i(\mathbf{r}) \right) + [\Psi(\mathbf{r})]^2 \\ + 0 & = & \sum_i D + \frac{\partial}{\partial \mathbf{r}_i} \left( + \frac{\partial [\Psi(\mathbf{r})]^2}{\partial \mathbf{r}_i} - + F_i(\mathbf{r})\,[\Psi(\mathbf{r})]^2 \right) \\ + 0 & = & + \frac{\partial^2 \Psi^2}{\partial \mathbf{r}_i^2} - + \frac{\partial F_i }{\partial \mathbf{r}_i}[\Psi(\mathbf{r})]^2 - + \frac{\partial \Psi^2}{\partial \mathbf{r}_i} F_i(\mathbf{r}) + \end{eqnarray*} - following drifted diffusion scheme: + we search for a drift function which satisfies - \[ - \mathbf{r}_{n+1} = \mathbf{r}_{n} + \tau \frac{\nabla - \Psi(\mathbf{r})}{\Psi(\mathbf{r})} + \eta \sqrt{\tau} - \] + \[ + \frac{\partial^2 \Psi^2}{\partial \mathbf{r}_i^2} = + [\Psi(\mathbf{r})]^2 \frac{\partial F_i }{\partial \mathbf{r}_i} + + \frac{\partial \Psi^2}{\partial \mathbf{r}_i} F_i(\mathbf{r}) + \] - where $\eta$ is a normally-distributed Gaussian random number. + to obtain a second derivative on the left, we need the drift to be + of the form + \[ + F_i(\mathbf{r}) = g(\mathbf{r}) \frac{\partial \Psi^2}{\partial \mathbf{r}_i} + \] + + \[ + \frac{\partial^2 \Psi^2}{\partial \mathbf{r}_i^2} = + [\Psi(\mathbf{r})]^2 \frac{\partial + g(\mathbf{r})}{\partial \mathbf{r}_i}\frac{\partial \Psi^2}{\partial \mathbf{r}_i} + + [\Psi(\mathbf{r})]^2 g(\mathbf{r}) \frac{\partial^2 + \Psi^2}{\partial \mathbf{r}_i^2} + + \frac{\partial \Psi^2}{\partial \mathbf{r}_i} + g(\mathbf{r}) \frac{\partial \Psi^2}{\partial \mathbf{r}_i} + \] + $g = 1 / \Psi^2$ satisfies this equation, so - First, write a function to compute the drift vector $\frac{\nabla \Psi(\mathbf{r})}{\Psi(\mathbf{r})}$. + \[ + F(\mathbf{r}) = \frac{\nabla [\Psi(\mathbf{r})]^2}{[\Psi(\mathbf{r})]^2} = 2 \frac{\nabla + \Psi(\mathbf{r})}{\Psi(\mathbf{r})} = 2 \nabla \left( \log \Psi(\mathbf{r}) \right) + \] + + In statistical mechanics, Fokker-Planck trajectories are generated + by a Langevin equation: + + \[ + \frac{\partial \mathbf{r}(t)}{\partial t} = 2D \frac{\nabla + \Psi(\mathbf{r}(t))}{\Psi} + \eta + \] + + where $\eta$ is a normally-distributed fluctuating random force. + + Discretizing this differential equation gives the following drifted + diffusion scheme: + + \[ + \mathbf{r}_{n+1} = \mathbf{r}_{n} + \tau\, 2D \frac{\nabla + \Psi(\mathbf{r})}{\Psi(\mathbf{r})} + \chi + \] + where $\chi$ is a Gaussian random variable with zero mean and + variance $\tau\,2D$. - *Python* - #+BEGIN_SRC python +**** Exercise 1 + + #+begin_exercise + Write a function to compute the drift vector $\frac{\nabla \Psi(\mathbf{r})}{\Psi(\mathbf{r})}$. + #+end_exercise + + *Python* + #+BEGIN_SRC python :tangle hydrogen.py def drift(a,r): ar_inv = -a/np.sqrt(np.dot(r,r)) return r * ar_inv - #+END_SRC + #+END_SRC - *Fortran* - #+BEGIN_SRC f90 + *Fortran* + #+BEGIN_SRC f90 :tangle hydrogen.f90 subroutine drift(a,r,b) implicit none double precision, intent(in) :: a, r(3) @@ -1023,54 +1096,50 @@ subroutine drift(a,r,b) ar_inv = -a / dsqrt(r(1)*r(1) + r(2)*r(2) + r(3)*r(3)) b(:) = r(:) * ar_inv end subroutine drift - #+END_SRC + #+END_SRC +**** TODO Exercise 2 - Now we can write the Monte Carlo sampling: + #+begin_exercise + Sample $\Psi^2$ approximately using the drifted diffusion scheme, + with a diffusion constant $D=1/2$. You can use a time step of + 0.001 a.u. + #+end_exercise - *Python* - #+BEGIN_SRC python + *Python* + #+BEGIN_SRC python :results output :tangle vmc.py +from hydrogen import * +from qmc_stats import * def MonteCarlo(a,tau,nmax): E = 0. N = 0. - sq_tau = sqrt(tau) + sq_tau = np.sqrt(tau) r_old = np.random.normal(loc=0., scale=1.0, size=(3)) d_old = drift(a,r_old) d2_old = np.dot(d_old,d_old) psi_old = psi(a,r_old) for istep in range(nmax): - eta = np.random.normal(loc=0., scale=1.0, size=(3)) - r_new = r_old + tau * d_old + sq_tau * eta - d_new = drift(a,r_new) - d2_new = np.dot(d_new,d_new) - psi_new = psi(a,r_new) - # Metropolis - prod = np.dot((d_new + d_old), (r_new - r_old)) - argexpo = 0.5 * (d2_new - d2_old)*tau + prod - q = psi_new / psi_old - q = np.exp(-argexpo) * q*q - if np.random.uniform() < q: - r_old = r_new - d_old = d_new - d2_old = d2_new - psi_old = psi_new - N += 1. - E += e_loc(a,r_old) + chi = np.random.normal(loc=0., scale=1.0, size=(3)) + r_new = r_old + tau * d_old + sq_tau * chi + N += 1. + E += e_loc(a,r_new) + r_old = r_new return E/N +a = 0.9 nmax = 100000 -tau = 0.1 +tau = 0.001 X = [MonteCarlo(a,tau,nmax) for i in range(30)] E, deltaE = ave_error(X) print(f"E = {E} +/- {deltaE}") - #+END_SRC + #+END_SRC - #+RESULTS: - : E = -0.4951783346213532 +/- 0.00022067316984271938 + #+RESULTS: + : E = -0.4112049153828464 +/- 0.00027934927432953063 - *Fortran* - #+BEGIN_SRC f90 + *Fortran* + #+BEGIN_SRC f90 subroutine variational_montecarlo(a,nmax,energy) implicit none double precision, intent(in) :: a @@ -1111,15 +1180,153 @@ program qmc call ave_error(X,nruns,ave,err) print *, 'E = ', ave, '+/-', err end program qmc - #+END_SRC + #+END_SRC - #+begin_src sh :results output :exports both + #+begin_src sh :results output :exports both gfortran hydrogen.f90 qmc_stats.f90 vmc.f90 -o vmc ./vmc - #+end_src + #+end_src + +*** Metropolis algorithm + Discretizing the differential equation to generate the desired + probability density will suffer from a discretization error + leading to biases in the averages. The [[https://en.wikipedia.org/wiki/Metropolis%E2%80%93Hastings_algorithm][Metropolis-Hastings + sampling algorithm]] removes exactly the discretization errors, so + large time steps can be employed. + + After the new position $\mathbf{r}_{n+1}$ has been computed, an + additional accept/reject step is performed. The acceptance + probability $A$ is chosen so that it is consistent with the + probability of leaving $\mathbf{r}_n$ and the probability of + entering $\mathbf{r}_{n+1}$: + + \[ A(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) = \min \left( 1, + \frac{g(\mathbf{r}_{n+1} \rightarrow \mathbf{r}_{n}) P(\mathbf{r}_{n+1})} + {g(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) P(\mathbf{r}_{n})} + \right) + \] + + In our Hydrogen atom example, $P$ is $\Psi^2$ and $g$ is a + solution of the discretized Fokker-Planck equation: + + \begin{eqnarray*} + P(r_{n}) &=& \Psi^2(\mathbf{r}_n) \\ + g(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1}) & = & + \frac{1}{(4\pi\,D\,\tau)^{3/2}} \exp \left[ - \frac{\left( + \mathbf{r}_{n+1} - \mathbf{r}_{n} - 2D \frac{\nabla + \Psi(\mathbf{r}_n)}{\Psi(\mathbf{r}_n)} \right)^2}{4D\,\tau} \right] + \end{eqnarray*} + + The accept/reject step is the following: + - Compute $A(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1})$. + - Draw a uniform random number $u$ + - if $u \le A(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1})$, accept + the move + - if $u>A(\mathbf{r}_{n} \rightarrow \mathbf{r}_{n+1})$, reject + the move: set $\mathbf{r}_{n+1} = \mathbf{r}_{n}$, but *don't + remove the sample from the average!* + + +**** TODO Exercise + + #+begin_exercise + Modify the previous program to introduce the accept/reject step. + You should recover the unbiased result. + #+end_exercise + + *Python* + #+BEGIN_SRC python +def MonteCarlo(a,tau,nmax): + E = 0. + N = 0. + sq_tau = np.sqrt(tau) + r_old = np.random.normal(loc=0., scale=1.0, size=(3)) + d_old = drift(a,r_old) + d2_old = np.dot(d_old,d_old) + psi_old = psi(a,r_old) + for istep in range(nmax): + eta = np.random.normal(loc=0., scale=1.0, size=(3)) + r_new = r_old + tau * d_old + sq_tau * eta + d_new = drift(a,r_new) + d2_new = np.dot(d_new,d_new) + psi_new = psi(a,r_new) + # Metropolis + prod = np.dot((d_new + d_old), (r_new - r_old)) + argexpo = 0.5 * (d2_new - d2_old)*tau + prod + q = psi_new / psi_old + q = np.exp(-argexpo) * q*q + if np.random.uniform() < q: + r_old = r_new + d_old = d_new + d2_old = d2_new + psi_old = psi_new + N += 1. + E += e_loc(a,r_old) + return E/N + + +nmax = 100000 +tau = 0.1 +X = [MonteCarlo(a,tau,nmax) for i in range(30)] +E, deltaE = ave_error(X) +print(f"E = {E} +/- {deltaE}") + #+END_SRC + + #+RESULTS: + : E = -0.4951783346213532 +/- 0.00022067316984271938 + + *Fortran* + #+BEGIN_SRC f90 +subroutine variational_montecarlo(a,nmax,energy) + implicit none + double precision, intent(in) :: a + integer , intent(in) :: nmax + double precision, intent(out) :: energy + + integer*8 :: istep + + double precision :: norm, r(3), w + + double precision, external :: e_loc, psi, gaussian + + energy = 0.d0 + norm = 0.d0 + do istep = 1,nmax + call random_gauss(r,3) + w = psi(a,r) + w = w*w / gaussian(r) + norm = norm + w + energy = energy + w * e_loc(a,r) + end do + energy = energy / norm +end subroutine variational_montecarlo + +program qmc + implicit none + double precision, parameter :: a = 0.9 + integer , parameter :: nmax = 100000 + integer , parameter :: nruns = 30 + + integer :: irun + double precision :: X(nruns) + double precision :: ave, err + + do irun=1,nruns + call gaussian_montecarlo(a,nmax,X(irun)) + enddo + call ave_error(X,nruns,ave,err) + print *, 'E = ', ave, '+/-', err +end program qmc + #+END_SRC + + #+begin_src sh :results output :exports both +gfortran hydrogen.f90 qmc_stats.f90 vmc.f90 -o vmc +./vmc + #+end_src + -* Diffusion Monte Carlo +* TODO Diffusion Monte Carlo We will now consider the H_2 molecule in a minimal basis composed of the $1s$ orbitals of the hydrogen atoms: @@ -1133,3 +1340,4 @@ gfortran hydrogen.f90 qmc_stats.f90 vmc.f90 -o vmc the nuclei. + diff --git a/energy_hydrogen.f90 b/energy_hydrogen.f90 index 8b3fe7f..db75ab0 100644 --- a/energy_hydrogen.f90 +++ b/energy_hydrogen.f90 @@ -26,7 +26,6 @@ program energy_hydrogen r(3) = x(l) w = psi(a(j),r) w = w * w * delta - energy = energy + w * e_loc(a(j), r) norm = norm + w end do diff --git a/energy_hydrogen.py b/energy_hydrogen.py index 719ba7b..969ed4d 100644 --- a/energy_hydrogen.py +++ b/energy_hydrogen.py @@ -1,23 +1,23 @@ import numpy as np from hydrogen import e_loc, psi - interval = np.linspace(-5,5,num=50) - delta = (interval[1]-interval[0])**3 +interval = np.linspace(-5,5,num=50) +delta = (interval[1]-interval[0])**3 - r = np.array([0.,0.,0.]) +r = np.array([0.,0.,0.]) - for a in [0.1, 0.2, 0.5, 0.9, 1., 1.5, 2.]: - E = 0. - norm = 0. - for x in interval: - r[0] = x - for y in interval: - r[1] = y - for z in interval: - r[2] = z - w = psi(a,r) - w = w * w * delta - E += w * e_loc(a,r) - norm += w - E = E / norm - print(f"a = {a} \t E = {E}") +for a in [0.1, 0.2, 0.5, 0.9, 1., 1.5, 2.]: + E = 0. + norm = 0. + for x in interval: + r[0] = x + for y in interval: + r[1] = y + for z in interval: + r[2] = z + w = psi(a,r) + w = w * w * delta + E += w * e_loc(a,r) + norm += w + E = E / norm + print(f"a = {a} \t E = {E}") diff --git a/hydrogen.f90 b/hydrogen.f90 index eccca10..b074930 100644 --- a/hydrogen.f90 +++ b/hydrogen.f90 @@ -23,3 +23,12 @@ double precision function e_loc(a,r) double precision, external :: kinetic, potential e_loc = kinetic(a,r) + potential(r) end function e_loc + +subroutine drift(a,r,b) + implicit none + double precision, intent(in) :: a, r(3) + double precision, intent(out) :: b(3) + double precision :: ar_inv + ar_inv = -a / dsqrt(r(1)*r(1) + r(2)*r(2) + r(3)*r(3)) + b(:) = r(:) * ar_inv +end subroutine drift diff --git a/hydrogen.py b/hydrogen.py index ff8fa96..7a78652 100644 --- a/hydrogen.py +++ b/hydrogen.py @@ -11,3 +11,7 @@ def kinetic(a,r): def e_loc(a,r): return kinetic(a,r) + potential(r) + +def drift(a,r): + ar_inv = -a/np.sqrt(np.dot(r,r)) + return r * ar_inv diff --git a/qmc_uniform.py b/qmc_uniform.py index 616e72d..36a41ec 100644 --- a/qmc_uniform.py +++ b/qmc_uniform.py @@ -1,19 +1,19 @@ from hydrogen import * from qmc_stats import * - def MonteCarlo(a, nmax): - E = 0. - N = 0. - for istep in range(nmax): - r = np.random.uniform(-5., 5., (3)) - w = psi(a,r) - w = w*w - N += w - E += w * e_loc(a,r) - return E/N +def MonteCarlo(a, nmax): + E = 0. + N = 0. + for istep in range(nmax): + r = np.random.uniform(-5., 5., (3)) + w = psi(a,r) + w = w*w + N += w + E += w * e_loc(a,r) + return E/N - a = 0.9 - nmax = 100000 - X = [MonteCarlo(a,nmax) for i in range(30)] - E, deltaE = ave_error(X) - print(f"E = {E} +/- {deltaE}") +a = 0.9 +nmax = 100000 +X = [MonteCarlo(a,nmax) for i in range(30)] +E, deltaE = ave_error(X) +print(f"E = {E} +/- {deltaE}") diff --git a/variance_hydrogen.f90 b/variance_hydrogen.f90 index 63a4fb7..95eb20a 100644 --- a/variance_hydrogen.f90 +++ b/variance_hydrogen.f90 @@ -26,7 +26,6 @@ program variance_hydrogen r(3) = x(l) w = psi(a(j),r) w = w * w * delta - energy = energy + w * e_loc(a(j), r) norm = norm + w end do @@ -44,7 +43,6 @@ program variance_hydrogen r(3) = x(l) w = psi(a(j),r) w = w * w * delta - s2 = s2 + w * ( e_loc(a(j), r) - energy )**2 norm = norm + w end do diff --git a/variance_hydrogen.py b/variance_hydrogen.py index 071d6aa..4de7300 100644 --- a/variance_hydrogen.py +++ b/variance_hydrogen.py @@ -20,8 +20,8 @@ for a in [0.1, 0.2, 0.5, 0.9, 1., 1.5, 2.]: El = e_loc(a, r) E += w * El norm += w - E = E / norm - s2 = 0. + E = E / norm + s2 = 0. for x in interval: r[0] = x for y in interval: @@ -32,5 +32,5 @@ for a in [0.1, 0.2, 0.5, 0.9, 1., 1.5, 2.]: w = w * w * delta El = e_loc(a, r) s2 += w * (El - E)**2 - s2 = s2 / norm - print(f"a = {a} \t E = {E:10.8f} \t \sigma^2 = {s2:10.8f}") + s2 = s2 / norm + print(f"a = {a} \t E = {E:10.8f} \t \sigma^2 = {s2:10.8f}") diff --git a/worg.css b/worg.css index 50e4846..9f23339 100644 --- a/worg.css +++ b/worg.css @@ -306,6 +306,10 @@ /* font-lock-warning-face */ background-color: #e3e3f7; } + .exercise { + /* font-lock-warning-face */ + background-color: #e3f7e3; + } .note { /* font-lock-warning-face */ background-color: #f7f7d9;