mirror of
https://gitlab.com/scemama/qp_plugins_scemama.git
synced 2024-12-31 16:45:45 +01:00
2133 lines
74 KiB
C
2133 lines
74 KiB
C
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <omp.h>
|
|
#include <cublas_v2.h>
|
|
#include <cuda_runtime.h>
|
|
#include <assert.h>
|
|
#include "gpu.h"
|
|
|
|
void gpu_upload_sp(gpu_data_sp* data,
|
|
int nO, int nV,
|
|
double* t1,
|
|
double* t2)
|
|
{
|
|
size_t lda;
|
|
|
|
int ngpus = 1;
|
|
if (MULTIGPU == 1) cudaGetDeviceCount(&ngpus);
|
|
|
|
float* tau = malloc((size_t) nO*nO*nV*nV * sizeof(float));
|
|
assert (tau != NULL);
|
|
|
|
float* tau_x = malloc((size_t) nO*nO*nV*nV * sizeof(float));
|
|
assert (tau_x != NULL);
|
|
|
|
#pragma omp parallel num_threads(ngpus)
|
|
{
|
|
cudaError_t cudaStat = cudaSuccess;
|
|
float* AA;
|
|
size_t igpu = omp_get_thread_num();
|
|
cudaSetDevice(igpu);
|
|
|
|
float* d_t1 = data[igpu].t1;
|
|
lda = nO;
|
|
AA = malloc((size_t) nO*nV*sizeof(float));
|
|
assert (AA != NULL);
|
|
for (size_t i=0 ; i<(size_t) nO*nV ; ++i) {
|
|
AA[i] = t1[i];
|
|
}
|
|
cublasSetMatrix(nO, nV, sizeof(float), AA, lda, d_t1, lda);
|
|
free(AA);
|
|
|
|
float* d_t2 = data[igpu].t2;
|
|
lda = nO*nO;
|
|
AA = malloc((size_t) nO*nO*nV*nV*sizeof(float));
|
|
assert (AA != NULL);
|
|
for (size_t i=0 ; i<(size_t) nO*nO*nV*nV ; ++i) {
|
|
AA[i] = t2[i];
|
|
}
|
|
cublasSetMatrix(nO*nO, nV*nV, sizeof(float), AA, lda, d_t2, lda);
|
|
free(AA);
|
|
|
|
size_t lda, ldb, ldc;
|
|
float alpha, beta;
|
|
float* A;
|
|
float* B;
|
|
float* C;
|
|
|
|
cublasHandle_t handle;
|
|
cublasCreate(&handle);
|
|
cudaStream_t stream[nV];
|
|
|
|
float* d_tau = data[igpu].tau;
|
|
|
|
float* d_tau_x = data[igpu].tau_x;
|
|
lda = nO * nO;
|
|
cublasSetMatrix(nO*nO, nV*nV, sizeof(float), tau_x, lda, d_tau_x, lda);
|
|
|
|
if (igpu == 0) {
|
|
|
|
for (size_t i=0 ; i<nV ; ++i) {
|
|
cudaStreamCreate(&(stream[i]));
|
|
}
|
|
alpha = 1.0;
|
|
for (size_t j=0 ; j<nO ; ++j) {
|
|
for (size_t b=0 ; b<nV ; ++b) {
|
|
cublasSetStream(handle, stream[b]);
|
|
beta = t1[j+b*nO];
|
|
A = &(d_t2[nO*(j + nO*nV*b)]); lda = nO*nO;
|
|
B = d_t1; ldb = nO;
|
|
C = &(d_tau[nO*(j + nO*nV*b)]); ldc = nO*nO;
|
|
cublasSgeam(handle, CUBLAS_OP_N, CUBLAS_OP_N, nO, nV, &alpha, A, lda, &beta, B, ldb, C, ldc);
|
|
}
|
|
}
|
|
cudaDeviceSynchronize();
|
|
alpha = 2.0;
|
|
beta = -1.0;
|
|
for (size_t b=0 ; b<nV ; ++b) {
|
|
for (size_t a=0 ; a<nV ; ++a) {
|
|
cublasSetStream(handle, stream[a]);
|
|
A = &(d_tau[nO*nO*(a + nV*b)]); lda = nO;
|
|
B = &(d_tau[nO*nO*(b + nV*a)]); ldb = nO;
|
|
C = &(d_tau_x[nO*nO*(a + nV*b)]); ldc = nO;
|
|
cublasSgeam(handle, CUBLAS_OP_N, CUBLAS_OP_N, nO, nO, &alpha, A, lda, &beta, B, ldb, C, ldc);
|
|
}
|
|
}
|
|
for (size_t i=0 ; i<nV ; ++i) {
|
|
cudaStreamDestroy(stream[i]);
|
|
}
|
|
cublasSetStream(handle, NULL);
|
|
lda = nO*nO;
|
|
cublasGetMatrix(nO*nO, nV*nV, sizeof(float), d_tau, lda, tau, lda);
|
|
cublasGetMatrix(nO*nO, nV*nV, sizeof(float), d_tau_x, lda, tau_x, lda);
|
|
}
|
|
|
|
#pragma omp barrier
|
|
|
|
if (igpu > 0) {
|
|
lda = nO * nO;
|
|
cublasSetMatrix(nO*nO, nV*nV, sizeof(float), tau, lda, d_tau, lda);
|
|
cublasSetMatrix(nO*nO, nV*nV, sizeof(float), tau_x, lda, d_tau_x, lda);
|
|
}
|
|
cublasDestroy(handle);
|
|
}
|
|
free(tau);
|
|
free(tau_x);
|
|
}
|
|
|
|
|
|
|
|
|
|
void compute_h_oo_chol_gpu_sp(gpu_data_sp* data, int igpu)
|
|
{
|
|
cudaError_t cudaStat;
|
|
int ngpus = 1;
|
|
if (MULTIGPU == 1) cudaGetDeviceCount(&ngpus);
|
|
igpu = igpu % ngpus;
|
|
|
|
const size_t cholesky_mo_num = data[igpu].cholesky_mo_num;
|
|
const size_t nO = data[igpu].nO;
|
|
const size_t nV = data[igpu].nV;
|
|
cudaSetDevice(igpu);
|
|
|
|
size_t m,n,k, lda, ldb, ldc;
|
|
float alpha, beta;
|
|
float* A;
|
|
float* B;
|
|
float* C;
|
|
cudaStream_t stream[nV];
|
|
|
|
cublasHandle_t handle;
|
|
cublasCreate(&handle);
|
|
|
|
float* d_H_oo = data[igpu].H_oo;
|
|
float* d_tau_x = data[igpu].tau_x;
|
|
float* d_cc_space_f_oo = data[igpu].cc_space_f_oo;
|
|
float* d_cc_space_v_vo_chol = data[igpu].cc_space_v_vo_chol;
|
|
float* d_cc_space_v_ov_chol = data[igpu].cc_space_v_ov_chol;
|
|
|
|
float* d_tau_kau;
|
|
cudaStat = cudaMalloc((void **)&d_tau_kau, cholesky_mo_num*nV*nO * sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
|
|
float* d_tmp_ovv;
|
|
cudaStat = cudaMalloc((void **)&d_tmp_ovv, nO*nV*nV * sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
|
|
float* d_tmp_vov;
|
|
cudaStat = cudaMalloc((void **)&d_tmp_vov, nV*nO*nV * sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
|
|
for (size_t i=0 ; i<nV ; ++i) {
|
|
cudaStreamCreate(&(stream[i]));
|
|
}
|
|
alpha = 1.0;
|
|
beta = 0.0;
|
|
for (size_t u=0 ; u<nO ; ++u) {
|
|
cublasScopy(handle, nO*nV*nV, &(d_tau_x[u]), nO, d_tmp_ovv, 1);
|
|
for (size_t b=0 ; b<nV ; ++b) {
|
|
cublasSetStream(handle, stream[b]);
|
|
A = &(d_tmp_ovv[nO*nV*b]); lda = nO;
|
|
B = &(d_tmp_ovv[nO*nV*b]); ldb = nO;
|
|
C = &(d_tmp_vov[nV*nO*b]); ldc = nV;
|
|
cublasSgeam(handle, CUBLAS_OP_T, CUBLAS_OP_T, nV, nO, &alpha, A, lda, &beta, B, ldb, C, ldc);
|
|
}
|
|
cudaDeviceSynchronize();
|
|
cublasSetStream(handle, NULL);
|
|
alpha = 1.0;
|
|
beta = 0.0;
|
|
m=cholesky_mo_num; n=nV; k=nO*nV;
|
|
A=d_cc_space_v_ov_chol; lda=cholesky_mo_num;
|
|
B=d_tmp_vov; ldb=nV;
|
|
C=&(d_tau_kau[cholesky_mo_num*nV*u]); ldc=cholesky_mo_num;
|
|
cublasSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_T, m, n, k, &alpha, A, lda, B, ldb, &beta, C, ldc);
|
|
}
|
|
for (size_t i=0 ; i<nV ; ++i) {
|
|
cudaStreamDestroy(stream[i]);
|
|
}
|
|
|
|
cudaFree(d_tmp_vov);
|
|
cudaFree(d_tmp_ovv);
|
|
|
|
cublasScopy(handle, nO*nO, d_cc_space_f_oo, 1, d_H_oo, 1);
|
|
alpha = 1.0;
|
|
beta = 1.0;
|
|
m=nO; n=nO; k=cholesky_mo_num*nV;
|
|
A=d_tau_kau; lda=cholesky_mo_num*nV;
|
|
B=d_cc_space_v_vo_chol; ldb=cholesky_mo_num*nV;
|
|
C=d_H_oo; ldc=nO;
|
|
cublasSgemm(handle, CUBLAS_OP_T, CUBLAS_OP_N, m, n, k, &alpha, A, lda, B, ldb, &beta, C, ldc);
|
|
|
|
cudaFree(d_tau_kau);
|
|
|
|
float* H_oo = malloc((size_t) nO*nO*sizeof(float));
|
|
assert (H_oo != NULL);
|
|
cublasGetMatrix(nO, nO, sizeof(float), d_H_oo, nO, H_oo, nO);
|
|
for (size_t i=0 ; i<ngpus ; ++i) {
|
|
if (i != igpu) {
|
|
float* d_H_oo = data[i].H_oo;
|
|
cudaSetDevice(i);
|
|
cublasSetMatrix(nO, nO, sizeof(float), H_oo, nO, d_H_oo, nO);
|
|
}
|
|
}
|
|
free(H_oo);
|
|
|
|
cublasDestroy(handle);
|
|
|
|
}
|
|
|
|
|
|
void compute_h_vo_chol_gpu_sp(gpu_data_sp* data, int igpu)
|
|
{
|
|
cudaError_t cudaStat;
|
|
int ngpus = 1;
|
|
if (MULTIGPU == 1) cudaGetDeviceCount(&ngpus);
|
|
igpu = igpu % ngpus;
|
|
|
|
const size_t cholesky_mo_num = data[igpu].cholesky_mo_num;
|
|
const size_t nO = data[igpu].nO;
|
|
const size_t nV = data[igpu].nV;
|
|
cudaSetDevice(igpu);
|
|
|
|
size_t m,n,k, lda, ldb, ldc;
|
|
float alpha, beta;
|
|
float* A;
|
|
float* B;
|
|
float* C;
|
|
cudaStream_t stream[nV];
|
|
|
|
cublasHandle_t handle;
|
|
cublasCreate(&handle);
|
|
|
|
float* d_t1 = data[igpu].t1;
|
|
float* d_H_vo = data[igpu].H_vo;
|
|
float* d_cc_space_f_vo = data[igpu].cc_space_f_vo;
|
|
float* d_cc_space_v_ov_chol = data[igpu].cc_space_v_ov_chol;
|
|
float* d_cc_space_v_vo_chol = data[igpu].cc_space_v_vo_chol;
|
|
|
|
cublasScopy(handle, nV*nO, d_cc_space_f_vo, 1, d_H_vo, 1);
|
|
|
|
float* d_tmp_k;
|
|
cudaStat = cudaMalloc((void **)&d_tmp_k, cholesky_mo_num * sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
|
|
alpha = 2.0;
|
|
beta = 0.0;
|
|
m=cholesky_mo_num; n=1; k=nO*nV;
|
|
A=d_cc_space_v_ov_chol; lda=cholesky_mo_num;
|
|
B=d_t1; ldb=nO*nV;
|
|
C=d_tmp_k; ldc=cholesky_mo_num;
|
|
cublasSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N, m, n, k, &alpha, A, lda, B, ldb, &beta, C, ldc);
|
|
|
|
alpha = 1.0;
|
|
beta = 1.0;
|
|
m=nV*nO; n=1; k=cholesky_mo_num;
|
|
A=d_cc_space_v_vo_chol; lda=cholesky_mo_num;
|
|
B=d_tmp_k; ldb=cholesky_mo_num;
|
|
C=d_H_vo; ldc=nV*nO;
|
|
cublasSgemm(handle, CUBLAS_OP_T, CUBLAS_OP_N, m, n, k, &alpha, A, lda, B, ldb, &beta, C, ldc);
|
|
|
|
cudaFree(d_tmp_k);
|
|
|
|
float* d_tmp;
|
|
cudaStat = cudaMalloc((void **)&d_tmp, cholesky_mo_num*nO*nO * sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
|
|
alpha = 1.0;
|
|
beta = 0.0;
|
|
m=cholesky_mo_num*nO; n=nO; k=nV;
|
|
A=d_cc_space_v_ov_chol; lda=cholesky_mo_num*nO;
|
|
B=d_t1; ldb=nO;
|
|
C=d_tmp; ldc=cholesky_mo_num*nO;
|
|
cublasSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_T, m, n, k, &alpha, A, lda, B, ldb, &beta, C, ldc);
|
|
|
|
float* d_tmp2;
|
|
cudaStat = cudaMalloc((void **)&d_tmp2, cholesky_mo_num*nO*nO * sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
|
|
for (size_t i=0 ; i<nV ; ++i) {
|
|
cudaStreamCreate(&(stream[i]));
|
|
}
|
|
for (size_t i=0 ; i<nO ; ++i) {
|
|
for (size_t j=0 ; j<nO ; ++j) {
|
|
cublasSetStream(handle, stream[j]);
|
|
cublasScopy(handle, cholesky_mo_num, &(d_tmp [cholesky_mo_num*(i+nO*j)]), 1,
|
|
&(d_tmp2[cholesky_mo_num*(j+nO*i)]), 1);
|
|
}
|
|
}
|
|
for (size_t i=0 ; i<nV ; ++i) {
|
|
cudaStreamDestroy(stream[i]);
|
|
}
|
|
cublasSetStream(handle, NULL);
|
|
|
|
alpha = -1.0;
|
|
beta = 1.0;
|
|
m=nV; n=nO; k=cholesky_mo_num*nO;
|
|
A=d_cc_space_v_ov_chol; lda=cholesky_mo_num*nO;
|
|
B=d_tmp2; ldb=cholesky_mo_num*nO;
|
|
C=d_H_vo; ldc=nV;
|
|
cublasSgemm(handle, CUBLAS_OP_T, CUBLAS_OP_N, m, n, k, &alpha, A, lda, B, ldb, &beta, C, ldc);
|
|
|
|
float* H_vo = malloc((size_t) nV*nO*sizeof(float));
|
|
assert (H_vo != NULL);
|
|
cublasGetMatrix(nV, nO, sizeof(float), d_H_vo, nV, H_vo, nV);
|
|
for (size_t i=0 ; i<ngpus ; ++i) {
|
|
if (i != igpu) {
|
|
float* d_H_vo = data[i].H_vo;
|
|
cudaSetDevice(i);
|
|
cublasSetMatrix(nV, nO, sizeof(float), H_vo, nV, d_H_vo, nV);
|
|
}
|
|
}
|
|
free(H_vo);
|
|
|
|
cublasDestroy(handle);
|
|
|
|
}
|
|
|
|
|
|
|
|
void compute_h_vv_chol_gpu_sp(gpu_data_sp* data, int igpu)
|
|
{
|
|
cudaError_t cudaStat;
|
|
int ngpus = 1;
|
|
if (MULTIGPU == 1) cudaGetDeviceCount(&ngpus);
|
|
igpu = igpu % ngpus;
|
|
|
|
const size_t cholesky_mo_num = data[igpu].cholesky_mo_num;
|
|
const size_t nO = data[igpu].nO;
|
|
const size_t nV = data[igpu].nV;
|
|
cudaSetDevice(igpu);
|
|
|
|
size_t m,n,k, lda, ldb, ldc;
|
|
float alpha, beta;
|
|
float* A;
|
|
float* B;
|
|
float* C;
|
|
cudaStream_t stream[nV];
|
|
|
|
cublasHandle_t handle;
|
|
cublasCreate(&handle);
|
|
|
|
float* d_H_vv = data[igpu].H_vv;
|
|
float* d_tau_x = data[igpu].tau_x;
|
|
float* d_cc_space_f_vv = data[igpu].cc_space_f_vv;
|
|
float* d_cc_space_v_ov_chol = data[igpu].cc_space_v_ov_chol;
|
|
|
|
float* d_tau_kia;
|
|
cudaStat = cudaMalloc((void **)&d_tau_kia, cholesky_mo_num*nO*nV * sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
|
|
float* d_tmp_oov;
|
|
cudaStat = cudaMalloc((void **)&d_tmp_oov, nO*nO*nV * sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
|
|
alpha = 1.0;
|
|
beta = 0.0;
|
|
for (size_t i=0 ; i<nV ; ++i) {
|
|
cudaStreamCreate(&(stream[i]));
|
|
}
|
|
for (size_t a=0 ; a<nV ; ++a) {
|
|
for (size_t b=0 ; b<nV ; ++b) {
|
|
cublasSetStream(handle, stream[b]);
|
|
cublasScopy(handle, nO*nO, &(d_tau_x[nO*nO*(a+nV*b)]), 1, &(d_tmp_oov[nO*nO*b]), 1);
|
|
}
|
|
cudaDeviceSynchronize();
|
|
cublasSetStream(handle, NULL);
|
|
alpha = 1.0;
|
|
beta = 0.0;
|
|
m=cholesky_mo_num; n=nO; k=nO*nV;
|
|
A=d_cc_space_v_ov_chol; lda=cholesky_mo_num;
|
|
B=d_tmp_oov; ldb=nO;
|
|
C=&(d_tau_kia[cholesky_mo_num*nO*a]); ldc=cholesky_mo_num;
|
|
cublasSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_T, m, n, k, &alpha, A, lda, B, ldb, &beta, C, ldc);
|
|
}
|
|
for (size_t i=0 ; i<nV ; ++i) {
|
|
cudaStreamDestroy(stream[i]);
|
|
}
|
|
cudaFree(d_tmp_oov);
|
|
|
|
cublasScopy(handle, nV*nV, d_cc_space_f_vv, 1, d_H_vv, 1);
|
|
alpha = -1.0;
|
|
beta = 1.0;
|
|
m=nV; n=nV; k=cholesky_mo_num*nO;
|
|
A=d_tau_kia; lda=cholesky_mo_num*nO;
|
|
B=d_cc_space_v_ov_chol; ldb=cholesky_mo_num*nO;
|
|
C=d_H_vv; ldc=nV;
|
|
cublasSgemm(handle, CUBLAS_OP_T, CUBLAS_OP_N, m, n, k, &alpha, A, lda, B, ldb, &beta, C, ldc);
|
|
|
|
cudaFree(d_tau_kia);
|
|
|
|
float* H_vv = malloc((size_t) nV*nV*sizeof(float));
|
|
assert (H_vv != NULL);
|
|
cublasGetMatrix(nV, nV, sizeof(float), d_H_vv, nV, H_vv, nV);
|
|
for (size_t i=0 ; i<ngpus ; ++i) {
|
|
if (i != igpu) {
|
|
float* d_H_vv = data[i].H_vv;
|
|
cudaSetDevice(i);
|
|
cublasSetMatrix(nV, nV, sizeof(float), H_vv, nV, d_H_vv, nV);
|
|
}
|
|
}
|
|
free(H_vv);
|
|
|
|
cublasDestroy(handle);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void compute_r2_space_chol_gpu_sp(gpu_data_sp* data, int nO, int nV, double* t1, double* r2, double* max_r2)
|
|
{
|
|
const size_t cholesky_mo_num = data->cholesky_mo_num;
|
|
|
|
int ngpus = 1;
|
|
if (MULTIGPU == 1) cudaGetDeviceCount(&ngpus);
|
|
|
|
float* J1 = malloc((size_t) nO*nV*nV*nO*sizeof(float));
|
|
assert (J1 != NULL);
|
|
|
|
float* K1 = malloc((size_t) nO*nV*nV*nO*sizeof(float));
|
|
assert (K1 != NULL);
|
|
|
|
#pragma omp parallel num_threads(ngpus)
|
|
{
|
|
cudaError_t cudaStat;
|
|
size_t m,n,k, lda, ldb, ldc;
|
|
float alpha, beta;
|
|
float* A;
|
|
float* B;
|
|
float* C;
|
|
cudaStream_t stream[nV];
|
|
|
|
size_t igpu = omp_get_thread_num();
|
|
cudaSetDevice(igpu);
|
|
|
|
cublasHandle_t handle;
|
|
cublasCreate(&handle);
|
|
|
|
float* d_r2;
|
|
lda = nO * nO;
|
|
cudaStat = cudaMalloc((void **)&d_r2, lda * nV * nV * sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
cudaMemset(d_r2, 0, nO*nO*nV*nV*sizeof(float));
|
|
memset(r2, 0, nO*nO*nV*nV*sizeof(double));
|
|
|
|
float* d_cc_space_v_oo_chol = data[igpu].cc_space_v_oo_chol;
|
|
float* d_cc_space_v_ov_chol = data[igpu].cc_space_v_ov_chol;
|
|
float* d_cc_space_v_vo_chol = data[igpu].cc_space_v_vo_chol;
|
|
float* d_cc_space_v_vv_chol = data[igpu].cc_space_v_vv_chol;
|
|
float* d_cc_space_v_oooo = data[igpu].cc_space_v_oooo;
|
|
float* d_cc_space_v_vooo = data[igpu].cc_space_v_vooo;
|
|
float* d_cc_space_v_oovv = data[igpu].cc_space_v_oovv;
|
|
float* d_cc_space_v_vvoo = data[igpu].cc_space_v_vvoo;
|
|
float* d_cc_space_v_oovo = data[igpu].cc_space_v_oovo;
|
|
float* d_cc_space_v_ovvo = data[igpu].cc_space_v_ovvo;
|
|
float* d_cc_space_v_ovov = data[igpu].cc_space_v_ovov;
|
|
float* d_cc_space_v_ovoo = data[igpu].cc_space_v_ovoo;
|
|
float* d_cc_space_f_vo = data[igpu].cc_space_f_vo;
|
|
float* d_tau = data[igpu].tau;
|
|
float* d_t1 = data[igpu].t1;
|
|
float* d_t2 = data[igpu].t2;
|
|
float* d_H_oo = data[igpu].H_oo;
|
|
float* d_H_vv = data[igpu].H_vv;
|
|
|
|
float* d_K1;
|
|
cudaStat = cudaMalloc((void **)&d_K1, nO*nV*nO*nV * sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
|
|
#pragma omp sections
|
|
{
|
|
|
|
#pragma omp section
|
|
{
|
|
float* d_J1;
|
|
cudaStat = cudaMalloc((void **)&d_J1, nO*nV*nV*nO * sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
|
|
alpha = 1.0;
|
|
beta = 0.0;
|
|
A = d_cc_space_v_ovvo; lda = nO*nV;
|
|
B = d_cc_space_v_ovvo; ldb = nO*nV;
|
|
C = d_J1; ldc = nO*nV;
|
|
cublasSgeam(handle, CUBLAS_OP_N, CUBLAS_OP_N, nO*nV, nV*nO, &alpha, A, lda, &beta, B, ldb, C, ldc);
|
|
|
|
|
|
float* d_X_ovoo;
|
|
cudaStat = cudaMalloc((void **)&d_X_ovoo, nO*nV*nO*nO * sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
alpha = 0.0;
|
|
beta = 1.0;
|
|
for (size_t i=0 ; i<nO ; ++i) {
|
|
cudaStreamCreate(&(stream[i]));
|
|
}
|
|
for (size_t j=0 ; j<nO ; ++j) {
|
|
for (size_t i=0 ; i<nO ; ++i) {
|
|
cublasSetStream(handle, stream[i]);
|
|
A = &(d_X_ovoo[nO*nV*(i+nO*j)]); lda = nO;
|
|
B = &(d_cc_space_v_ovoo[nO*nV*(j+nO*i)]); ldb = nO;
|
|
C = &(d_X_ovoo[nO*nV*(i+nO*j)]); ldc = nO;
|
|
cublasSgeam(handle, CUBLAS_OP_N, CUBLAS_OP_N, nO, nV, &alpha, A, lda, &beta, B, ldb, C, ldc);
|
|
}
|
|
}
|
|
for (size_t i=0 ; i<nO ; ++i) {
|
|
cudaStreamDestroy(stream[i]);
|
|
}
|
|
cublasSetStream(handle, NULL);
|
|
|
|
|
|
float* d_Y_ovov;
|
|
cudaStat = cudaMalloc((void **)&d_Y_ovov, nO*nV*nO*nV * sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
|
|
alpha = 1.0;
|
|
beta = 0.0;
|
|
m=nO*nV*nO; n=nV; k=nO;
|
|
A=d_X_ovoo; lda=nO*nV*nO;
|
|
B=d_t1; ldb=nO;
|
|
C=d_Y_ovov; ldc=nO*nV*nO;
|
|
cublasSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N, m, n, k, &alpha, A, lda, B, ldb, &beta, C, ldc);
|
|
cudaFree(d_X_ovoo);
|
|
|
|
alpha = 1.0;
|
|
beta = -1.0;
|
|
for (size_t i=0 ; i<nV ; ++i) {
|
|
cudaStreamCreate(&(stream[i]));
|
|
}
|
|
for (size_t j=0 ; j<nO ; ++j) {
|
|
for (size_t i=0 ; i<nV ; ++i) {
|
|
cublasSetStream(handle, stream[i]);
|
|
A = &(d_J1[nO*nV*(i+nV*j)]); lda = nO;
|
|
B = &(d_Y_ovov[nO*nV*(j+nO*i)]); ldb = nO;
|
|
C = &(d_J1[nO*nV*(i+nV*j)]); ldc = nO;
|
|
cublasSgeam(handle, CUBLAS_OP_N, CUBLAS_OP_N, nO, nV, &alpha, A, lda, &beta, B, ldb, C, ldc);
|
|
}
|
|
}
|
|
for (size_t i=0 ; i<nV ; ++i) {
|
|
cudaStreamDestroy(stream[i]);
|
|
}
|
|
cublasSetStream(handle, NULL);
|
|
|
|
float* d_tmp_cc;
|
|
cudaStat = cudaMalloc((void **)&d_tmp_cc, cholesky_mo_num*nV*nO * sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
|
|
alpha = 1.0;
|
|
beta = 0.0;
|
|
m=cholesky_mo_num*nV; n=nO; k=nV;
|
|
A=d_cc_space_v_vv_chol; lda=cholesky_mo_num*nV;
|
|
B=d_t1; ldb=nO;
|
|
C=d_tmp_cc; ldc=cholesky_mo_num*nV;
|
|
cublasSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_T, m, n, k, &alpha, A, lda, B, ldb, &beta, C, ldc);
|
|
|
|
float* d_J1_tmp;
|
|
cudaStat = cudaMalloc((void **)&d_J1_tmp, nV*nO*nV*nO * sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
|
|
alpha = 1.0;
|
|
beta = 0.0;
|
|
m=nV*nO; n=nV*nO; k=cholesky_mo_num;
|
|
A=d_tmp_cc; lda=cholesky_mo_num;
|
|
B=d_cc_space_v_vo_chol; ldb=cholesky_mo_num;
|
|
C=d_J1_tmp; ldc=nV*nO;
|
|
cublasSgemm(handle, CUBLAS_OP_T, CUBLAS_OP_N, m, n, k, &alpha, A, lda, B, ldb, &beta, C, ldc);
|
|
|
|
cudaFree(d_tmp_cc);
|
|
|
|
alpha = 1.0;
|
|
beta = 1.0;
|
|
for (size_t i=0 ; i<nO ; ++i) {
|
|
cudaStreamCreate(&(stream[i]));
|
|
}
|
|
for (size_t i=0 ; i<nO ; ++i) {
|
|
cublasSetStream(handle, stream[i]);
|
|
A = &(d_J1[nO*nV*nV*i]); lda = nO*nV;
|
|
B = &(d_J1_tmp[nV*nO*nV*i]); ldb = nV;
|
|
C = &(d_J1[nO*nV*nV*i]); ldc = nO*nV;
|
|
cublasSgeam(handle, CUBLAS_OP_N, CUBLAS_OP_T, nO*nV, nV, &alpha, A, lda, &beta, B, ldb, C, ldc);
|
|
}
|
|
for (size_t i=0 ; i<nO ; ++i) {
|
|
cudaStreamDestroy(stream[i]);
|
|
}
|
|
cublasSetStream(handle, NULL);
|
|
cudaFree(d_J1_tmp);
|
|
|
|
float* d_X_voov;
|
|
cudaStat = cudaMalloc((void **)&d_X_voov, nV*nO*nO*nV * sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
|
|
for (size_t i=0 ; i<nV ; ++i) {
|
|
cudaStreamCreate(&(stream[i]));
|
|
}
|
|
alpha = 0.5;
|
|
for (size_t j=0 ; j<nO ; ++j) {
|
|
for (size_t b=0 ; b<nV ; ++b) {
|
|
cublasSetStream(handle, stream[b]);
|
|
beta = t1[j+b*nO];
|
|
A = &(d_t2[nO*(j + nO*nV*b)]); lda = nO*nO;
|
|
B = d_t1; ldb = nO;
|
|
C = &(d_Y_ovov[nO*(b+nV*j)]); ldc = nO*nV*nO;
|
|
cublasSgeam(handle, CUBLAS_OP_N, CUBLAS_OP_N, nO, nV, &alpha, A, lda, &beta, B, ldb, C, ldc);
|
|
}
|
|
}
|
|
alpha = 1.0;
|
|
beta = 0.0;
|
|
for (size_t j=0 ; j<nO ; ++j) {
|
|
for (size_t b=0 ; b<nV ; ++b) {
|
|
cublasSetStream(handle, stream[b]);
|
|
A = &(d_cc_space_v_vvoo[nV*(b+nV*nO*j)]); lda = nV*nV;
|
|
B = &(d_cc_space_v_vvoo[nV*(b+nV*nO*j)]); ldb = nV*nV;
|
|
C = &(d_X_voov[nV*nO*(j+nO*b)]); ldc = nV;
|
|
cublasSgeam(handle, CUBLAS_OP_N, CUBLAS_OP_N, nV, nO, &alpha, A, lda, &beta, B, ldb, C, ldc);
|
|
}
|
|
}
|
|
for (size_t i=0 ; i<nV ; ++i) {
|
|
cudaStreamDestroy(stream[i]);
|
|
}
|
|
cublasSetStream(handle, NULL);
|
|
|
|
float* d_Z_ovvo;
|
|
cudaStat = cudaMalloc((void **)&d_Z_ovvo, nO*nV*nV*nO * sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
|
|
alpha = -1.0;
|
|
beta = 0.0;
|
|
m=nO*nV; n=nV*nO; k=nO*nV;
|
|
A=d_Y_ovov; lda=nO*nV;
|
|
B=d_X_voov; ldb=nV*nO;
|
|
C=d_Z_ovvo; ldc=nO*nV;
|
|
cublasSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_T, m, n, k, &alpha, A, lda, B, ldb, &beta, C, ldc);
|
|
cudaFree(d_X_voov);
|
|
cudaFree(d_Y_ovov);
|
|
|
|
alpha = 1.0;
|
|
beta = 1.0;
|
|
for (size_t i=0 ; i<nV ; ++i) {
|
|
cudaStreamCreate(&(stream[i]));
|
|
}
|
|
for (size_t i=0 ; i<nO ; ++i) {
|
|
for (size_t b=0 ; b<nV ; ++b) {
|
|
cublasSetStream(handle, stream[b]);
|
|
A = &(d_J1[nO*nV*(b+nV*i)]); lda = nO;
|
|
B = &(d_Z_ovvo[nO*(b+nV*nV*i)]); ldb=nO*nV;
|
|
C = &(d_J1[nO*nV*(b+nV*i)]); ldc = nO;
|
|
cublasSgeam(handle, CUBLAS_OP_N, CUBLAS_OP_N, nO, nV, &alpha, A, lda, &beta, B, ldb, C, ldc);
|
|
}
|
|
}
|
|
|
|
float* d_Y_vovo;
|
|
cudaStat = cudaMalloc((void **)&d_Y_vovo, nV*nO*nV*nO * sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
|
|
alpha = 1.0;
|
|
beta = -0.5;
|
|
for (size_t j=0 ; j<nO ; ++j) {
|
|
for (size_t i=0 ; i<nO ; ++i) {
|
|
cublasSetStream(handle, stream[i]);
|
|
A = &(d_cc_space_v_vvoo[nV*nV*(i+nO*j)]); lda = nV;
|
|
B = &(d_cc_space_v_vvoo[nV*nV*(i+nO*j)]); ldb = nV;
|
|
C = &(d_Y_vovo[nV*(i+nO*nV*j)]); ldc = nV*nO;
|
|
cublasSgeam(handle, CUBLAS_OP_N, CUBLAS_OP_T, nV, nV, &alpha, A, lda, &beta, B, ldb, C, ldc);
|
|
}
|
|
}
|
|
|
|
float* d_X_ovvo;
|
|
cudaStat = cudaMalloc((void **)&d_X_ovvo, nO*nV*nV*nO * sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
|
|
alpha = 1.0;
|
|
beta = 0.0;
|
|
for (size_t j=0 ; j<nO ; ++j) {
|
|
for (size_t b=0 ; b<nV ; ++b) {
|
|
cublasSetStream(handle, stream[b]);
|
|
A = &(d_t2[nO*(j+nO*nV*b)]); lda = nO*nO;
|
|
B = &(d_t2[nO*(j+nO*nV*b)]); ldb = nO*nO;
|
|
C = &(d_X_ovvo[nO*nV*(b+nV*j)]); ldc = nO;
|
|
cublasSgeam(handle, CUBLAS_OP_N, CUBLAS_OP_N, nO, nV, &alpha, A, lda, &beta, B, ldb, C, ldc);
|
|
}
|
|
}
|
|
for (size_t i=0 ; i<nV ; ++i) {
|
|
cudaStreamDestroy(stream[i]);
|
|
}
|
|
cublasSetStream(handle, NULL);
|
|
|
|
alpha = 1.0;
|
|
beta = 0.0;
|
|
m=nO*nV; n=nV*nO; k=nV*nO;
|
|
A=d_X_ovvo; lda=nO*nV;
|
|
B=d_Y_vovo; ldb=nV*nO;
|
|
C=d_Z_ovvo; ldc=nO*nV;
|
|
cublasSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_T, m, n, k, &alpha, A, lda, B, ldb, &beta, C, ldc);
|
|
cudaFree(d_X_ovvo);
|
|
cudaFree(d_Y_vovo);
|
|
|
|
for (size_t i=0 ; i<nV ; ++i) {
|
|
cudaStreamCreate(&(stream[i]));
|
|
}
|
|
alpha = 1.0;
|
|
beta = 1.0;
|
|
for (size_t i=0 ; i<nO ; ++i) {
|
|
for (size_t b=0 ; b<nV ; ++b) {
|
|
cublasSetStream(handle, stream[b]);
|
|
A = &(d_J1[nO*nV*(b+nV*i)]); lda = nO;
|
|
B = &(d_Z_ovvo[nO*(b+nV*nV*i)]); ldb = nO*nV;
|
|
C = &(d_J1[nO*nV*(b+nV*i)]); ldc = nO;
|
|
cublasSgeam(handle, CUBLAS_OP_N, CUBLAS_OP_N, nO, nV, &alpha, A, lda, &beta, B, ldb, C, ldc);
|
|
}
|
|
}
|
|
for (size_t i=0 ; i<nV ; ++i) {
|
|
cudaStreamDestroy(stream[i]);
|
|
}
|
|
cublasSetStream(handle, NULL);
|
|
|
|
cudaFree(d_Z_ovvo);
|
|
|
|
lda = nO*nV;
|
|
cublasGetMatrix(nO*nV, nV*nO, sizeof(float), d_J1, lda, J1, lda);
|
|
cudaFree(d_J1);
|
|
|
|
}
|
|
|
|
#pragma omp section
|
|
{
|
|
|
|
alpha = 1.0;
|
|
beta = 0.0;
|
|
A = d_cc_space_v_ovov; lda = nO*nV;
|
|
B = d_cc_space_v_ovov; ldb = nO*nV;
|
|
C = d_K1; ldc = nO*nV;
|
|
cublasSgeam(handle, CUBLAS_OP_N, CUBLAS_OP_N, nO*nV, nO*nV, &alpha, A, lda, &beta, B, ldb, C, ldc);
|
|
|
|
alpha = -1.0;
|
|
beta = 1.0;
|
|
m=nO*nV*nO; n=nV; k=nO;
|
|
A=d_cc_space_v_ovoo; lda=nO*nV*nO;
|
|
B=d_t1; ldb=nO;
|
|
C=d_K1; ldc=nO*nV*nO;
|
|
cublasSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N, m, n, k, &alpha, A, lda, B, ldb, &beta, C, ldc);
|
|
|
|
float* d_X;
|
|
cudaStat = cudaMalloc((void **)&d_X, nV*nO*nV*nO * sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
|
|
float* d_Y;
|
|
cudaStat = cudaMalloc((void **)&d_Y, nO*nV*nV*nO * sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
|
|
for (size_t i=0 ; i<nV ; ++i) {
|
|
cudaStreamCreate(&(stream[i]));
|
|
}
|
|
alpha =-1.0;
|
|
beta = 0.0;
|
|
for (size_t j=0 ; j<nO ; ++j) {
|
|
for (size_t i=0 ; i<nO ; ++i) {
|
|
cublasSetStream(handle, stream[i]);
|
|
A = &(d_cc_space_v_vvoo[nV*nV*(i+nO*j)]); lda = nV;
|
|
B = &(d_cc_space_v_vvoo[nV*nV*(i+nO*j)]); ldb = nV;
|
|
C = &(d_X[nV*(j+nO*nV*i)]); ldc = nV*nO;
|
|
cublasSgeam(handle, CUBLAS_OP_N, CUBLAS_OP_N, nV, nV, &alpha, A, lda, &beta, B, ldb, C, ldc);
|
|
}
|
|
}
|
|
|
|
alpha = 0.5;
|
|
for (size_t j=0 ; j<nO ; ++j) {
|
|
for (size_t b=0 ; b<nV ; ++b) {
|
|
cublasSetStream(handle, stream[b]);
|
|
beta = t1[j+b*nO];
|
|
A = &(d_t2[nO*(j+nO*nV*b)]); lda = nO*nO;
|
|
B = d_t1; ldb = nO;
|
|
C = &(d_Y[nO*(b+nV*nV*j)]); ldc = nO*nV;
|
|
cublasSgeam(handle, CUBLAS_OP_N, CUBLAS_OP_N, nO, nV, &alpha, A, lda, &beta, B, ldb, C, ldc);
|
|
}
|
|
}
|
|
for (size_t i=0 ; i<nV ; ++i) {
|
|
cudaStreamDestroy(stream[i]);
|
|
}
|
|
cublasSetStream(handle, NULL);
|
|
|
|
float* d_Z;
|
|
cudaStat = cudaMalloc((void **)&d_Z, nO*nV*nV*nO * sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
|
|
alpha = 1.0;
|
|
beta = 0.0;
|
|
m=nV*nO; n=nO*nV; k=nV*nO;
|
|
A=d_Y; lda=nO*nV;
|
|
B=d_X; ldb=nV*nO;
|
|
C=d_Z; ldc=nO*nV;
|
|
cublasSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N, m, n, k, &alpha, A, lda, B, ldb, &beta, C, ldc);
|
|
|
|
cudaFree(d_X);
|
|
cudaFree(d_Y);
|
|
|
|
|
|
float* d_t1v;
|
|
cudaStat = cudaMalloc((void **)&d_t1v, cholesky_mo_num*nO*nO * sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
|
|
alpha = 1.0;
|
|
beta = 0.0;
|
|
m=cholesky_mo_num*nO; n=nO; k=nV;
|
|
A=d_cc_space_v_ov_chol; lda=cholesky_mo_num*nO;
|
|
B=d_t1; ldb=nO;
|
|
C=d_t1v; ldc=cholesky_mo_num*nO;
|
|
cublasSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_T, m, n, k, &alpha, A, lda, B, ldb, &beta, C, ldc);
|
|
|
|
float* d_K1tmp;
|
|
cudaStat = cudaMalloc((void **)&d_K1tmp, nO*nO*nV*nV * sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
|
|
alpha = 1.0;
|
|
beta = 0.0;
|
|
m=nO*nO; n=nV*nV; k=cholesky_mo_num;
|
|
A=d_t1v; lda=cholesky_mo_num;
|
|
B=d_cc_space_v_vv_chol; ldb=cholesky_mo_num;
|
|
C=d_K1tmp; ldc=nO*nO;
|
|
cublasSgemm(handle, CUBLAS_OP_T, CUBLAS_OP_N, m, n, k, &alpha, A, lda, B, ldb, &beta, C, ldc);
|
|
cudaFree(d_t1v);
|
|
|
|
|
|
for (size_t i=0 ; i<nV ; ++i) {
|
|
cudaStreamCreate(&(stream[i]));
|
|
}
|
|
alpha = 1.0;
|
|
beta = 1.0;
|
|
for (size_t i=0 ; i<nO ; ++i) {
|
|
for (size_t b=0 ; b<nV ; ++b) {
|
|
cublasSetStream(handle, stream[b]);
|
|
A = &(d_K1[nO*nV*(i+nO*b)]); lda = nO;
|
|
B = &(d_K1tmp[nO*(i+nO*nV*b)]); ldb = nO*nO;
|
|
C = &(d_K1[nO*nV*(i+nO*b)]); ldc = nO;
|
|
cublasSgeam(handle, CUBLAS_OP_N, CUBLAS_OP_N, nO, nV, &alpha, A, lda, &beta, B, ldb, C, ldc);
|
|
}
|
|
}
|
|
|
|
for (size_t i=0 ; i<nO ; ++i) {
|
|
for (size_t b=0 ; b<nV ; ++b) {
|
|
cublasSetStream(handle, stream[b]);
|
|
A = &(d_K1[nO*nV*(i+nO*b)]); lda = nO;
|
|
B = &(d_Z[nO*(b+nV*nV*i)]); ldb = nO*nV;
|
|
C = &(d_K1[nO*nV*(i+nO*b)]); ldc = nO;
|
|
cublasSgeam(handle, CUBLAS_OP_N, CUBLAS_OP_N, nO, nV, &alpha, A, lda, &beta, B, ldb, C, ldc);
|
|
}
|
|
}
|
|
|
|
for (size_t i=0 ; i<nV ; ++i) {
|
|
cudaStreamDestroy(stream[i]);
|
|
}
|
|
cublasSetStream(handle, NULL);
|
|
cudaFree(d_K1tmp);
|
|
cudaFree(d_Z);
|
|
|
|
lda = nO*nV;
|
|
cublasGetMatrix(nO*nV, nO*nV, sizeof(float), d_K1, lda, K1, lda);
|
|
|
|
}
|
|
|
|
#pragma omp section
|
|
{
|
|
float* d_Y_oooo;
|
|
cudaStat = cudaMalloc((void**)&d_Y_oooo, nO*nO*nO*nO*sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
|
|
alpha = 1.0;
|
|
beta = 0.0;
|
|
m=nO ; n=nO*nO*nO; k=nV;
|
|
A = d_t1 ; lda = nO;
|
|
B = d_cc_space_v_vooo ; ldb = nV;
|
|
C = d_Y_oooo; ldc = nO;
|
|
cublasSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N, m, n, k, &alpha, A, lda, B, ldb, &beta, C, ldc);
|
|
|
|
float* d_A1;
|
|
cudaStat = cudaMalloc((void**)&d_A1, nO*nO*nO*nO*sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
|
|
alpha = 1.0;
|
|
beta = 1.0;
|
|
A = d_cc_space_v_oooo; lda = nO*nO;
|
|
B = d_Y_oooo; ldb = nO*nO;
|
|
C = d_A1; ldc = nO*nO;
|
|
cublasSgeam(handle, CUBLAS_OP_N, CUBLAS_OP_N, nO*nO, nO*nO, &alpha, A, lda, &beta, B, ldb, C, ldc);
|
|
for (size_t i=0 ; i<nO ; ++i) {
|
|
cudaStreamCreate(&(stream[i]));
|
|
}
|
|
for (size_t j=0 ; j<nO ; ++j) {
|
|
for (size_t i=0 ; i<nO ; ++i) {
|
|
cublasSetStream(handle, stream[i]);
|
|
alpha = 1.0;
|
|
beta = 1.0;
|
|
A = &(d_A1[nO*nO*(i+nO*j)]); lda = nO;
|
|
B = &(d_Y_oooo[nO*nO*(j+nO*i)]); ldb = nO;
|
|
C = &(d_A1[nO*nO*(i+nO*j)]); ldc = nO;
|
|
cublasSgeam(handle, CUBLAS_OP_N, CUBLAS_OP_T, nO, nO, &alpha, A, lda, &beta, B, ldb, C, ldc);
|
|
|
|
}
|
|
}
|
|
for (size_t i=0 ; i<nO ; ++i) {
|
|
cudaStreamDestroy(stream[i]);
|
|
}
|
|
cublasSetStream(handle, NULL);
|
|
cudaFree(d_Y_oooo);
|
|
|
|
alpha = 1.0;
|
|
beta = 1.0;
|
|
m=nO*nO ; n=nO*nO; k=nV*nV;
|
|
A = d_tau ; lda = nO*nO;
|
|
B = d_cc_space_v_vvoo ; ldb = nV*nV;
|
|
C = d_A1; ldc = nO*nO;
|
|
cublasSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N, m, n, k, &alpha, A, lda, B, ldb, &beta, C, ldc);
|
|
|
|
alpha = 1.0;
|
|
beta = 0.0;
|
|
m=nO*nO ; n=nV*nV; k=nO*nO;
|
|
A = d_A1 ; lda = nO*nO;
|
|
B = d_tau ; ldb = nO*nO;
|
|
C = d_r2; ldc = nO*nO;
|
|
cublasSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N, m, n, k, &alpha, A, lda, B, ldb, &beta, C, ldc);
|
|
cudaFree(d_A1);
|
|
}
|
|
|
|
// g_vir
|
|
#pragma omp section
|
|
{
|
|
float* d_g_vir;
|
|
cudaStat = cudaMalloc((void**)&d_g_vir, nV*nV*sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
cublasScopy(handle, nV*nV, d_H_vv, 1, d_g_vir, 1);
|
|
|
|
alpha = -1.0;
|
|
beta = 1.0;
|
|
m=nV ; n=nV; k=nO;
|
|
A = d_cc_space_f_vo ; lda = nV;
|
|
B = d_t1 ; ldb = nO;
|
|
C = d_g_vir; ldc = nV;
|
|
cublasSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N, m, n, k, &alpha, A, lda, B, ldb, &beta, C, ldc);
|
|
|
|
float* d_tmp_k;
|
|
cudaStat = cudaMalloc((void**)&d_tmp_k, cholesky_mo_num*sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
alpha = 1.0;
|
|
beta = 0.0;
|
|
m=cholesky_mo_num ; n=1; k=nO*nV;
|
|
A = d_cc_space_v_ov_chol; lda = cholesky_mo_num;
|
|
B = d_t1 ; ldb = nO*nV;
|
|
C = d_tmp_k; ldc = cholesky_mo_num;
|
|
cublasSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N, m, n, k, &alpha, A, lda, B, ldb, &beta, C, ldc);
|
|
|
|
alpha = 2.0;
|
|
beta = 1.0;
|
|
m=nV*nV; n=1; k=cholesky_mo_num;
|
|
A = d_cc_space_v_vv_chol; lda = cholesky_mo_num;
|
|
B = d_tmp_k ; ldb = cholesky_mo_num;
|
|
C = d_g_vir; ldc = nV*nV;
|
|
cublasSgemm(handle, CUBLAS_OP_T, CUBLAS_OP_N, m, n, k, &alpha, A, lda, B, ldb, &beta, C, ldc);
|
|
cudaFree(d_tmp_k);
|
|
|
|
float* d_tmp_vo;
|
|
cudaStat = cudaMalloc((void**)&d_tmp_vo, cholesky_mo_num*nV*nO*sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
alpha = 1.0;
|
|
beta = 0.0;
|
|
m=cholesky_mo_num*nV ; n=nO; k=nV;
|
|
A = d_cc_space_v_vv_chol; lda = cholesky_mo_num*nV;
|
|
B = d_t1 ; ldb = nO;
|
|
C = d_tmp_vo; ldc = cholesky_mo_num*nV;
|
|
cublasSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_T, m, n, k, &alpha, A, lda, B, ldb, &beta, C, ldc);
|
|
|
|
float* d_tmp_vo2;
|
|
cudaStat = cudaMalloc((void**)&d_tmp_vo2, cholesky_mo_num*nV*nO*sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
for (size_t i=0 ; i<nO ; ++i) {
|
|
cudaStreamCreate(&(stream[i]));
|
|
}
|
|
for (size_t i=0 ; i<nO ; ++i) {
|
|
cublasSetStream(handle, stream[i]);
|
|
alpha = -1.0;
|
|
beta = 0.0;
|
|
A = &(d_tmp_vo[cholesky_mo_num*nV*i]); lda = cholesky_mo_num;
|
|
B = &(d_tmp_vo[cholesky_mo_num*nV*i]); ldb = cholesky_mo_num;
|
|
C = &(d_tmp_vo2[cholesky_mo_num*i]); ldc = cholesky_mo_num*nO;
|
|
cublasSgeam(handle, CUBLAS_OP_N, CUBLAS_OP_N, cholesky_mo_num, nV, &alpha, A, lda, &beta, B, ldb, C, ldc);
|
|
}
|
|
for (size_t i=0 ; i<nO ; ++i) {
|
|
cudaStreamDestroy(stream[i]);
|
|
}
|
|
cublasSetStream(handle, NULL);
|
|
cudaFree(d_tmp_vo);
|
|
|
|
alpha = 1.0;
|
|
beta = 1.0;
|
|
m=nV ; n=nV; k=nO*cholesky_mo_num;
|
|
A = d_cc_space_v_ov_chol; lda = cholesky_mo_num*nO;
|
|
B = d_tmp_vo2 ; ldb = cholesky_mo_num*nO;
|
|
C = d_g_vir; ldc = nV;
|
|
cublasSgemm(handle, CUBLAS_OP_T, CUBLAS_OP_N, m, n, k, &alpha, A, lda, B, ldb, &beta, C, ldc);
|
|
cudaFree(d_tmp_vo2);
|
|
|
|
float* d_Y_oovv;
|
|
cudaStat = cudaMalloc((void**)&d_Y_oovv, nO*nO*nV*nV*sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
alpha = 1.0;
|
|
beta = 0.0;
|
|
m=nO*nO*nV ; n=nV; k=nV;
|
|
A = d_t2; lda = nO*nO*nV;
|
|
B = d_g_vir; ldb = nV;
|
|
C = d_Y_oovv; ldc = nO*nO*nV;
|
|
cublasSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N, m, n, k, &alpha, A, lda, B, ldb, &beta, C, ldc);
|
|
cudaFree(d_g_vir);
|
|
|
|
alpha = 1.0;
|
|
beta = 1.0;
|
|
A = d_r2; lda = nO*nO;
|
|
B = d_Y_oovv; ldb = nO*nO;
|
|
C = d_r2; ldc = nO*nO;
|
|
cublasSgeam(handle, CUBLAS_OP_N, CUBLAS_OP_N, nO*nO, nV*nV, &alpha, A, lda, &beta, B, ldb, C, ldc);
|
|
|
|
for (size_t i=0 ; i<nV ; ++i) {
|
|
cudaStreamCreate(&(stream[i]));
|
|
}
|
|
for (size_t j=0 ; j<nV ; ++j) {
|
|
for (size_t i=0 ; i<nV ; ++i) {
|
|
cublasSetStream(handle, stream[i]);
|
|
alpha = 1.0;
|
|
beta = 1.0;
|
|
A = &(d_r2[nO*nO*(i+nV*j)]); lda = nO;
|
|
B = &(d_Y_oovv[nO*nO*(j+nV*i)]); ldb = nO;
|
|
C = &(d_r2[nO*nO*(i+nV*j)]); ldc = nO;
|
|
cublasSgeam(handle, CUBLAS_OP_N, CUBLAS_OP_T, nO, nO, &alpha, A, lda, &beta, B, ldb, C, ldc);
|
|
|
|
}
|
|
}
|
|
for (size_t i=0 ; i<nV ; ++i) {
|
|
cudaStreamDestroy(stream[i]);
|
|
}
|
|
cublasSetStream(handle, NULL);
|
|
cudaFree(d_Y_oovv);
|
|
}
|
|
|
|
// g_occ
|
|
#pragma omp section
|
|
{
|
|
float* d_g_occ;
|
|
lda = nO;
|
|
cudaStat = cudaMalloc((void **)&d_g_occ, nO*nO * sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
cublasScopy(handle, nO*nO, d_H_oo, 1, d_g_occ, 1);
|
|
|
|
float* d_X;
|
|
cudaStat = cudaMalloc((void **)&d_X, cholesky_mo_num*sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
|
|
alpha = 2.0;
|
|
beta = 0.0;
|
|
m=cholesky_mo_num; n=nO*nV;
|
|
A=d_cc_space_v_ov_chol; lda=cholesky_mo_num;
|
|
B=d_t1; ldb=1;
|
|
C=d_X; ldc=1;
|
|
cublasSgemv(handle, CUBLAS_OP_N, m, n, &alpha, A, lda, B, ldb, &beta, C, ldc);
|
|
|
|
alpha = 1.0;
|
|
beta = 1.0;
|
|
m=cholesky_mo_num; n=nO*nO;
|
|
A=d_cc_space_v_oo_chol; lda=cholesky_mo_num;
|
|
B=d_X; ldb=1;
|
|
C=d_g_occ; ldc=1;
|
|
cublasSgemv(handle, CUBLAS_OP_T, m, n, &alpha, A, lda, B, ldb, &beta, C, ldc);
|
|
|
|
cudaFree(d_X);
|
|
alpha = -1.0;
|
|
beta = 1.0;
|
|
m=nO*nV; n=nO*nO;
|
|
A=d_cc_space_v_ovoo; lda=nO*nV;
|
|
B=d_t1; ldb=1;
|
|
C=d_g_occ; ldc=1;
|
|
cublasSgemv(handle, CUBLAS_OP_T, m, n, &alpha, A, lda, B, ldb, &beta, C, ldc);
|
|
|
|
alpha = 1.0;
|
|
beta = 1.0;
|
|
m=nO; n=nO; k=nV;
|
|
A=d_t1; lda=nO;
|
|
B=d_cc_space_f_vo; ldb=nV;
|
|
C=d_g_occ; ldc=nO;
|
|
cublasSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N, m, n, k, &alpha, A, lda, B, ldb, &beta, C, ldc);
|
|
|
|
float* d_X_oovv;
|
|
cudaStat = cudaMalloc((void **)&d_X_oovv, nO*nO*nV*nV * sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
|
|
alpha = 1.0;
|
|
beta = 0.0;
|
|
m=nO; n=nO*nV*nV; k=nO;
|
|
A=d_g_occ; lda=nO;
|
|
B=d_t2; ldb=nO;
|
|
C=d_X_oovv; ldc=nO;
|
|
cublasSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N, m, n, k, &alpha, A, lda, B, ldb, &beta, C, ldc);
|
|
cudaFree(d_g_occ);
|
|
|
|
alpha = 1.0;
|
|
beta = -1.0;
|
|
A = d_r2; lda = nO*nO;
|
|
B = d_X_oovv; ldb = nO*nO;
|
|
C = d_r2; ldc = nO*nO;
|
|
cublasSgeam(handle, CUBLAS_OP_N, CUBLAS_OP_N, nO*nO, nV*nV, &alpha, A, lda, &beta, B, ldb, C, ldc);
|
|
|
|
for (size_t i=0 ; i<nV ; ++i) {
|
|
cudaStreamCreate(&(stream[i]));
|
|
}
|
|
for (size_t j=0 ; j<nV ; ++j) {
|
|
for (size_t i=0 ; i<nV ; ++i) {
|
|
cublasSetStream(handle, stream[i]);
|
|
alpha = 1.0;
|
|
beta = -1.0;
|
|
A = &(d_r2[nO*nO*(i+nV*j)]); lda = nO;
|
|
B = &(d_X_oovv[nO*nO*(j+nV*i)]); ldb = nO;
|
|
C = &(d_r2[nO*nO*(i+nV*j)]); ldc = nO;
|
|
cublasSgeam(handle, CUBLAS_OP_N, CUBLAS_OP_T, nO, nO, &alpha, A, lda, &beta, B, ldb, C, ldc);
|
|
}
|
|
}
|
|
for (size_t i=0 ; i<nV ; ++i) {
|
|
cudaStreamDestroy(stream[i]);
|
|
}
|
|
cublasSetStream(handle, NULL);
|
|
cudaFree(d_X_oovv);
|
|
}
|
|
|
|
} // end sections
|
|
|
|
lda = nO*nV;
|
|
cublasSetMatrix(lda, nO*nV, sizeof(float), K1, lda, d_K1, lda);
|
|
|
|
#define BLOCK_SIZE 16
|
|
|
|
#pragma omp sections
|
|
{
|
|
|
|
#pragma omp section
|
|
{
|
|
float* d_X_vovv;
|
|
cudaStat = cudaMalloc((void **)&d_X_vovv, nV*nO*nV*BLOCK_SIZE * sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
|
|
float* d_Y_oovv;
|
|
cudaStat = cudaMalloc((void **)&d_Y_oovv, nO*nO*nV*nV * sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
|
|
for (size_t iblock=0 ; iblock<nV ; iblock += BLOCK_SIZE) {
|
|
size_t mbs = nV < iblock+BLOCK_SIZE ? nV : iblock+BLOCK_SIZE;
|
|
for (size_t gam=iblock ; gam<mbs ; ++gam) {
|
|
cudaStreamCreate(&(stream[gam]));
|
|
}
|
|
for (size_t gam=iblock ; gam<mbs ; ++gam) {
|
|
cublasSetStream(handle, stream[gam]);
|
|
alpha = 1.0;
|
|
beta = 0.0;
|
|
m=nV; n=nO*nV; k=cholesky_mo_num;
|
|
A=&(d_cc_space_v_vv_chol[cholesky_mo_num*nV*gam]); lda=cholesky_mo_num;
|
|
B=d_cc_space_v_ov_chol; ldb=cholesky_mo_num;
|
|
C=&(d_X_vovv[nV*nO*nV*(gam-iblock)]); ldc=nV;
|
|
cublasSgemm(handle, CUBLAS_OP_T, CUBLAS_OP_N, m, n, k, &alpha, A, lda, B, ldb, &beta, C, ldc);
|
|
}
|
|
for (size_t gam=iblock ; gam<mbs ; ++gam) {
|
|
cudaStreamDestroy(stream[gam]);
|
|
}
|
|
cublasSetStream(handle, NULL);
|
|
mbs = BLOCK_SIZE < nV-iblock ? BLOCK_SIZE : nV-iblock;
|
|
alpha = 1.0;
|
|
beta = 0.0;
|
|
m=nO; n=nO*nV*mbs; k=nV;
|
|
A=d_t1; lda=nO;
|
|
B=d_X_vovv; ldb=nV;
|
|
C=&(d_Y_oovv[nO*nO*nV*iblock]); ldc=nO;
|
|
cublasSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N, m, n, k, &alpha, A, lda, B, ldb, &beta, C, ldc);
|
|
}
|
|
cudaFree(d_X_vovv);
|
|
alpha = 1.0;
|
|
beta = 1.0;
|
|
for (size_t i=0 ; i<nV ; ++i) {
|
|
cudaStreamCreate(&(stream[i]));
|
|
}
|
|
for (size_t j=0 ; j<nV ; ++j) {
|
|
for (size_t i=0 ; i<nV ; ++i) {
|
|
cublasSetStream(handle, stream[i]);
|
|
A = &(d_r2[nO*nO*(i+nV*j)]); lda = nO;
|
|
B = &(d_Y_oovv[nO*nO*(i+nV*j)]); ldb = nO;
|
|
C = &(d_r2[nO*nO*(i+nV*j)]); ldc = nO;
|
|
cublasSgeam(handle, CUBLAS_OP_N, CUBLAS_OP_T, nO, nO, &alpha, A, lda, &beta, B, ldb, C, ldc);
|
|
}
|
|
for (size_t i=0 ; i<nV ; ++i) {
|
|
cublasSetStream(handle, stream[i]);
|
|
A = &(d_r2[nO*nO*(i+nV*j)]); lda = nO;
|
|
B = &(d_Y_oovv[nO*nO*(j+nV*i)]); ldb = nO;
|
|
C = &(d_r2[nO*nO*(i+nV*j)]); ldc = nO;
|
|
cublasSgeam(handle, CUBLAS_OP_N, CUBLAS_OP_N, nO, nO, &alpha, A, lda, &beta, B, ldb, C, ldc);
|
|
}
|
|
}
|
|
for (size_t i=0 ; i<nV ; ++i) {
|
|
cudaStreamDestroy(stream[i]);
|
|
}
|
|
cublasSetStream(handle, NULL);
|
|
cudaFree(d_Y_oovv);
|
|
}
|
|
|
|
#pragma omp section
|
|
{
|
|
float* d_tcc2;
|
|
cudaStat = cudaMalloc((void **)&d_tcc2, cholesky_mo_num*nV*nO * sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
|
|
alpha = 1.0;
|
|
beta = 0.0;
|
|
m=cholesky_mo_num*nV; n=nO; k=nV;
|
|
A=d_cc_space_v_vv_chol; lda=cholesky_mo_num*nV;
|
|
B=d_t1; ldb=nO;
|
|
C=d_tcc2; ldc=cholesky_mo_num*nV;
|
|
cublasSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_T, m, n, k, &alpha, A, lda, B, ldb, &beta, C, ldc);
|
|
|
|
float* d_tcc;
|
|
cudaStat = cudaMalloc((void **)&d_tcc, cholesky_mo_num*nO*nV * sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
|
|
alpha = 1.0;
|
|
beta = 0.0;
|
|
m=cholesky_mo_num*nO; n=nV; k=nO;
|
|
A=d_cc_space_v_oo_chol; lda=cholesky_mo_num*nO;
|
|
B=d_t1; ldb=nO;
|
|
C=d_tcc; ldc=cholesky_mo_num*nO;
|
|
cublasSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N, m, n, k, &alpha, A, lda, B, ldb, &beta, C, ldc);
|
|
|
|
float* d_X_ovvo;
|
|
cudaStat = cudaMalloc((void **)&d_X_ovvo, nO*nV*nV*nO * sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
|
|
alpha = 1.0;
|
|
beta = 0.0;
|
|
m=nO*nV; n=nV*nO; k=cholesky_mo_num;
|
|
A=d_tcc; lda=cholesky_mo_num;
|
|
B=d_tcc2; ldb=cholesky_mo_num;
|
|
C=d_X_ovvo; ldc=nO*nV;
|
|
cublasSgemm(handle, CUBLAS_OP_T, CUBLAS_OP_N, m, n, k, &alpha, A, lda, B, ldb, &beta, C, ldc);
|
|
cudaFree(d_tcc);
|
|
cudaFree(d_tcc2);
|
|
|
|
for (size_t i=0 ; i<nV ; ++i) {
|
|
cudaStreamCreate(&(stream[i]));
|
|
}
|
|
alpha = 1.0;
|
|
beta = -1.0;
|
|
for(size_t gam = 0; gam < nV; gam++){
|
|
for(size_t bet = 0; bet < nV; bet++){
|
|
cublasSetStream(handle, stream[bet]);
|
|
A = &(d_r2[nO*nO*(bet+nV*gam)]); lda = nO;
|
|
B = &(d_X_ovvo[nO*(bet+nV*gam)]); ldb = nO*nV*nV;
|
|
C = &(d_r2[nO*nO*(bet+nV*gam)]); ldc = nO;
|
|
cublasSgeam(handle, CUBLAS_OP_N, CUBLAS_OP_N, nO, nO, &alpha, A, lda, &beta, B, ldb, C, ldc);
|
|
}
|
|
for(size_t bet = 0; bet < nV; bet++){
|
|
cublasSetStream(handle, stream[bet]);
|
|
A = &(d_r2[nO*nO*(bet+nV*gam)]); lda = nO;
|
|
B = &(d_X_ovvo[nO*(gam+nV*bet)]); ldb = nO*nV*nV;
|
|
C = &(d_r2[nO*nO*(bet+nV*gam)]); ldc = nO;
|
|
cublasSgeam(handle, CUBLAS_OP_N, CUBLAS_OP_T, nO, nO, &alpha, A, lda, &beta, B, ldb, C, ldc);
|
|
}
|
|
}
|
|
for (size_t i=0 ; i<nV ; ++i) {
|
|
cudaStreamDestroy(stream[i]);
|
|
}
|
|
cublasSetStream(handle, NULL);
|
|
cudaFree(d_X_ovvo);
|
|
}
|
|
|
|
#pragma omp section
|
|
{
|
|
float* d_X_oovv;
|
|
cudaStat = cudaMalloc((void **)&d_X_oovv, nO*nO*nV*nV * sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
|
|
alpha = 1.0;
|
|
beta = 0.0;
|
|
m=nO*nO*nV; n=nV; k=nO;
|
|
A=d_cc_space_v_oovo; lda=nO*nO*nV;
|
|
B=d_t1; ldb=nO;
|
|
C=d_X_oovv; ldc=nO*nO*nV;
|
|
cublasSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N, m, n, k, &alpha, A, lda, B, ldb, &beta, C, ldc);
|
|
|
|
alpha = 1.0;
|
|
beta = -1.0;
|
|
A = d_r2; lda = nO*nO;
|
|
B = d_X_oovv; ldb = nO*nO;
|
|
C = d_r2; ldc = nO*nO;
|
|
cublasSgeam(handle, CUBLAS_OP_N, CUBLAS_OP_N, nO*nO, nV*nV, &alpha, A, lda, &beta, B, ldb, C, ldc);
|
|
for (size_t i=0 ; i<nV ; ++i) {
|
|
cudaStreamCreate(&(stream[i]));
|
|
}
|
|
for (size_t j=0 ; j<nV ; ++j) {
|
|
for (size_t i=0 ; i<nV ; ++i) {
|
|
cublasSetStream(handle, stream[i]);
|
|
A = &(d_r2[nO*nO*(i+nV*j)]); lda = nO;
|
|
B = &(d_X_oovv[nO*nO*(j+nV*i)]); ldb = nO;
|
|
C = &(d_r2[nO*nO*(i+nV*j)]); ldc = nO;
|
|
cublasSgeam(handle, CUBLAS_OP_N, CUBLAS_OP_T, nO, nO, &alpha, A, lda, &beta, B, ldb, C, ldc);
|
|
}
|
|
}
|
|
|
|
float* d_X_vovo;
|
|
cudaStat = cudaMalloc((void **)&d_X_vovo, nV*nO*nV*nO * sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
|
|
alpha = 0.0;
|
|
beta = 1.0;
|
|
for (size_t i=0 ; i<nO ; ++i) {
|
|
for (size_t gam=0 ; gam<nV ; ++gam) {
|
|
cublasSetStream(handle, stream[gam]);
|
|
A = &(d_X_vovo[nV*nO*(gam+nV*i)]); lda = nV;
|
|
B = &(d_cc_space_v_ovvo[nO*nV*(gam+nV*i)]); ldb = nO;
|
|
C = &(d_X_vovo[nV*nO*(gam+nV*i)]); ldc = nV;
|
|
cublasSgeam(handle, CUBLAS_OP_N, CUBLAS_OP_T, nV, nO, &alpha, A, lda, &beta, B, ldb, C, ldc);
|
|
}
|
|
}
|
|
for (size_t i=0 ; i<nV ; ++i) {
|
|
cudaStreamDestroy(stream[i]);
|
|
}
|
|
cublasSetStream(handle, NULL);
|
|
|
|
float* d_Y_oovo;
|
|
cudaStat = cudaMalloc((void **)&d_Y_oovo, nO*nO*nV*nO * sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
|
|
alpha = 1.0;
|
|
beta = 0.0;
|
|
m=nO; n=nO*nV*nO; k=nV;
|
|
A=d_t1; lda=nO;
|
|
B=d_X_vovo; ldb=nV;
|
|
C=d_Y_oovo; ldc=nO;
|
|
cublasSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N, m, n, k, &alpha, A, lda, B, ldb, &beta, C, ldc);
|
|
|
|
cudaFree(d_X_vovo);
|
|
|
|
alpha = 1.0;
|
|
beta = 0.0;
|
|
m=nO*nO*nV; n=nV; k=nO;
|
|
A=d_Y_oovo; lda=nO*nO*nV;
|
|
B=d_t1; ldb=nO;
|
|
C=d_X_oovv; ldc=nO*nO*nV;
|
|
cublasSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N, m, n, k, &alpha, A, lda, B, ldb, &beta, C, ldc);
|
|
|
|
cudaFree(d_Y_oovo);
|
|
|
|
alpha = 1.0;
|
|
beta = -1.0;
|
|
for (size_t i=0 ; i<nV ; ++i) {
|
|
cudaStreamCreate(&(stream[i]));
|
|
}
|
|
for (size_t j=0 ; j<nV ; ++j) {
|
|
for (size_t i=0 ; i<nV ; ++i) {
|
|
cublasSetStream(handle, stream[i]);
|
|
A = &(d_r2[nO*nO*(i+nV*j)]); lda = nO;
|
|
B = &(d_X_oovv[nO*nO*(i+nV*j)]); ldb = nO;
|
|
C = &(d_r2[nO*nO*(i+nV*j)]); ldc = nO;
|
|
cublasSgeam(handle, CUBLAS_OP_N, CUBLAS_OP_T, nO, nO, &alpha, A, lda, &beta, B, ldb, C, ldc);
|
|
}
|
|
for (size_t i=0 ; i<nV ; ++i) {
|
|
cublasSetStream(handle, stream[i]);
|
|
A = &(d_r2[nO*nO*(i+nV*j)]); lda = nO;
|
|
B = &(d_X_oovv[nO*nO*(j+nV*i)]); ldb = nO;
|
|
C = &(d_r2[nO*nO*(i+nV*j)]); ldc = nO;
|
|
cublasSgeam(handle, CUBLAS_OP_N, CUBLAS_OP_N, nO, nO, &alpha, A, lda, &beta, B, ldb, C, ldc);
|
|
}
|
|
}
|
|
for (size_t i=0 ; i<nV ; ++i) {
|
|
cudaStreamDestroy(stream[i]);
|
|
}
|
|
cublasSetStream(handle, NULL);
|
|
cudaFree(d_X_oovv);
|
|
}
|
|
|
|
#pragma omp section
|
|
{
|
|
alpha = 1.0;
|
|
beta = 1.0;
|
|
A = d_r2; lda = nO*nO;
|
|
B = d_cc_space_v_oovv; ldb = nO*nO;
|
|
C = d_r2; ldc = nO*nO;
|
|
cublasSgeam(handle, CUBLAS_OP_N, CUBLAS_OP_N, nO*nO, nV*nV, &alpha, A, lda, &beta, B, ldb, C, ldc);
|
|
|
|
}
|
|
|
|
#pragma omp section
|
|
{
|
|
float* d_J1;
|
|
lda = nO*nV;
|
|
cudaStat = cudaMalloc((void **)&d_J1, nO*nV*nV*nO * sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
cublasSetMatrix(lda, nV*nO, sizeof(float), J1, lda, d_J1, lda);
|
|
|
|
float* d_X_ovvo;
|
|
cudaStat = cudaMalloc((void **)&d_X_ovvo, nO*nV*nV*nO * sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
|
|
for (size_t i=0 ; i<nV ; ++i) {
|
|
cudaStreamCreate(&(stream[i]));
|
|
}
|
|
alpha = 1.0;
|
|
beta = -0.5;
|
|
for (size_t i=0 ; i<nO ; ++i) {
|
|
for (size_t b=0 ; b<nV ; ++b) {
|
|
cublasSetStream(handle, stream[b]);
|
|
A = &(d_J1[nO*nV*(b+nV*i)]); lda = nO;
|
|
B = &(d_K1[nO*nV*(i+nO*b)]); ldb = nO;
|
|
C = &(d_X_ovvo[nO*(b+nV*nV*i)]); ldc = nO*nV;
|
|
cublasSgeam(handle, CUBLAS_OP_N, CUBLAS_OP_N, nO, nV, &alpha, A, lda, &beta, B, ldb, C, ldc);
|
|
}
|
|
}
|
|
for (size_t i=0 ; i<nV ; ++i) {
|
|
cudaStreamDestroy(stream[i]);
|
|
}
|
|
cublasSetStream(handle, NULL);
|
|
cudaFree(d_J1);
|
|
|
|
float* d_Y_voov;
|
|
cudaStat = cudaMalloc((void **)&d_Y_voov, nV*nO*nO*nV * sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
|
|
for (size_t i=0 ; i<nV ; ++i) {
|
|
cudaStreamCreate(&(stream[i]));
|
|
}
|
|
alpha = 2.0;
|
|
beta = -1.0;
|
|
for (size_t v=0 ; v<nO ; ++v) {
|
|
for (size_t g=0 ; g<nV ; ++g) {
|
|
cublasSetStream(handle, stream[g]);
|
|
A = &(d_t2[nO*(v+nO*nV*g)]); lda = nO*nO;
|
|
B = &(d_t2[nO*(v+nO*g)]); ldb = nO*nO*nV;
|
|
C = &(d_Y_voov[nV*nO*(v+nO*g)]); ldc = nV;
|
|
cublasSgeam(handle, CUBLAS_OP_T, CUBLAS_OP_T, nV, nO, &alpha, A, lda, &beta, B, ldb, C, ldc);
|
|
}
|
|
}
|
|
for (size_t i=0 ; i<nV ; ++i) {
|
|
cudaStreamDestroy(stream[i]);
|
|
}
|
|
cublasSetStream(handle, NULL);
|
|
|
|
float* d_Z_ovov;
|
|
cudaStat = cudaMalloc((void **)&d_Z_ovov, nO*nV*nO*nV * sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
|
|
alpha = 1.0;
|
|
beta = 0.0;
|
|
m=nO*nV; n=nO*nV; k=nV*nO;
|
|
A=d_X_ovvo; lda=nO*nV;
|
|
B=d_Y_voov; ldb=nV*nO;
|
|
C=d_Z_ovov; ldc=nO*nV;
|
|
cublasSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N, m, n, k, &alpha, A, lda, B, ldb, &beta, C, ldc);
|
|
cudaFree(d_X_ovvo);
|
|
cudaFree(d_Y_voov);
|
|
|
|
for (size_t i=0 ; i<nV ; ++i) {
|
|
cudaStreamCreate(&(stream[i]));
|
|
}
|
|
alpha = 1.0;
|
|
beta = 1.0;
|
|
for (size_t b=0 ; b<nV ; ++b) {
|
|
for (size_t g=0 ; g<nV ; ++g) {
|
|
cublasSetStream(handle, stream[g]);
|
|
A = &(d_r2[nO*nO*(b+nV*g)]); lda = nO;
|
|
B = &(d_Z_ovov[nO*(b+nV*nO*g)]); ldb = nO*nV;
|
|
C = &(d_r2[nO*nO*(b+nV*g)]); ldc = nO;
|
|
cublasSgeam(handle, CUBLAS_OP_N, CUBLAS_OP_N, nO, nO, &alpha, A, lda, &beta, B, ldb, C, ldc);
|
|
}
|
|
for (size_t g=0 ; g<nV ; ++g) {
|
|
cublasSetStream(handle, stream[g]);
|
|
A = &(d_r2[nO*nO*(b+nV*g)]); lda = nO;
|
|
B = &(d_Z_ovov[nO*(g+nV*nO*b)]); ldb = nO*nV;
|
|
C = &(d_r2[nO*nO*(b+nV*g)]); ldc = nO;
|
|
cublasSgeam(handle, CUBLAS_OP_N, CUBLAS_OP_T, nO, nO, &alpha, A, lda, &beta, B, ldb, C, ldc);
|
|
}
|
|
}
|
|
for (size_t i=0 ; i<nV ; ++i) {
|
|
cudaStreamDestroy(stream[i]);
|
|
}
|
|
cublasSetStream(handle, NULL);
|
|
cudaFree(d_Z_ovov);
|
|
|
|
}
|
|
|
|
#pragma omp section
|
|
{
|
|
float* d_X_ovov;
|
|
cudaStat = cudaMalloc((void **)&d_X_ovov, nO*nV*nO*nV * sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
|
|
float* d_Y_ovov;
|
|
cudaStat = cudaMalloc((void **)&d_Y_ovov, nO*nV*nO*nV * sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
|
|
for (size_t i=0 ; i<nV ; ++i) {
|
|
cudaStreamCreate(&(stream[i]));
|
|
}
|
|
alpha = 0.5;
|
|
beta = 0.0;
|
|
for (size_t a=0 ; a<nV ; ++a) {
|
|
for (size_t b=0 ; b<nV ; ++b) {
|
|
cublasSetStream(handle, stream[b]);
|
|
A = &(d_K1[nO*(a+nV*nO*b)]); lda = nO*nV;
|
|
B = &(d_K1[nO*(a+nV*nO*b)]); ldb = nO*nV;
|
|
C = &(d_X_ovov[nO*(a+nV*nO*b)]); ldc = nO*nV;
|
|
cublasSgeam(handle, CUBLAS_OP_T, CUBLAS_OP_N, nO, nO, &alpha, A, lda, &beta, B, ldb, C, ldc);
|
|
}
|
|
}
|
|
alpha = 1.0;
|
|
for (size_t v=0 ; v<nO ; ++v) {
|
|
for (size_t g=0 ; g<nV ; ++g) {
|
|
cublasSetStream(handle, stream[g]);
|
|
A = &(d_t2[nO*(v+nO*g)]); lda = nO*nO*nV;
|
|
B = &(d_t2[nO*(v+nO*g)]); ldb = nO*nO*nV;
|
|
C = &(d_Y_ovov[nO*nV*(v+nO*g)]); ldc = nO;
|
|
cublasSgeam(handle, CUBLAS_OP_N, CUBLAS_OP_N, nO, nV, &alpha, A, lda, &beta, B, ldb, C, ldc);
|
|
}
|
|
}
|
|
for (size_t i=0 ; i<nV ; ++i) {
|
|
cudaStreamDestroy(stream[i]);
|
|
}
|
|
cublasSetStream(handle, NULL);
|
|
|
|
float* d_Z_ovov;
|
|
cudaStat = cudaMalloc((void **)&d_Z_ovov, nO*nV*nO*nV * sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
|
|
alpha = 1.0;
|
|
beta = 0.0;
|
|
m=nO*nV; n=nO*nV; k=nO*nV;
|
|
A=d_X_ovov; lda=nO*nV;
|
|
B=d_Y_ovov; ldb=nO*nV;
|
|
C=d_Z_ovov; ldc=nO*nV;
|
|
cublasSgemm(handle, CUBLAS_OP_T, CUBLAS_OP_N, m, n, k, &alpha, A, lda, B, ldb, &beta, C, ldc);
|
|
|
|
cudaFree(d_X_ovov);
|
|
cudaFree(d_Y_ovov);
|
|
|
|
for (size_t i=0 ; i<nV ; ++i) {
|
|
cudaStreamCreate(&(stream[i]));
|
|
}
|
|
alpha = 1.0;
|
|
beta = -1.0;
|
|
for (size_t b=0 ; b<nV ; ++b) {
|
|
for (size_t g=0 ; g<nV ; ++g) {
|
|
cublasSetStream(handle, stream[g]);
|
|
A = &(d_r2[nO*nO*(b+nV*g)]); lda = nO;
|
|
B = &(d_Z_ovov[nO*(b+nV*nO*g)]); ldb = nO*nV;
|
|
C = &(d_r2[nO*nO*(b+nV*g)]); ldc = nO;
|
|
cublasSgeam(handle, CUBLAS_OP_N, CUBLAS_OP_N, nO, nO, &alpha, A, lda, &beta, B, ldb, C, ldc);
|
|
}
|
|
for (size_t g=0 ; g<nV ; ++g) {
|
|
cublasSetStream(handle, stream[g]);
|
|
A = &(d_r2[nO*nO*(b+nV*g)]); lda = nO;
|
|
B = &(d_Z_ovov[nO*(g+nV*nO*b)]); ldb = nO*nV;
|
|
C = &(d_r2[nO*nO*(b+nV*g)]); ldc = nO;
|
|
cublasSgeam(handle, CUBLAS_OP_N, CUBLAS_OP_T, nO, nO, &alpha, A, lda, &beta, B, ldb, C, ldc);
|
|
}
|
|
}
|
|
for (size_t i=0 ; i<nV ; ++i) {
|
|
cudaStreamDestroy(stream[i]);
|
|
}
|
|
cublasSetStream(handle, NULL);
|
|
cudaFree(d_Z_ovov);
|
|
|
|
}
|
|
|
|
#pragma omp section
|
|
{
|
|
float* d_X_ovov;
|
|
cudaStat = cudaMalloc((void **)&d_X_ovov, nO*nV*nO*nV * sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
|
|
float* d_Y_ovov;
|
|
cudaStat = cudaMalloc((void **)&d_Y_ovov, nO*nV*nO*nV * sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
|
|
|
|
for (size_t i=0 ; i<nV ; ++i) {
|
|
cudaStreamCreate(&(stream[i]));
|
|
}
|
|
alpha = 1.0;
|
|
beta = 0.0;
|
|
for (size_t a=0 ; a<nV ; ++a) {
|
|
for (size_t g=0 ; g<nV ; ++g) {
|
|
cublasSetStream(handle, stream[g]);
|
|
A = &(d_K1[nO*(a+nV*nO*g)]); lda = nO*nV;
|
|
B = &(d_K1[nO*(a+nV*nO*g)]); ldb = nO*nV;
|
|
C = &(d_X_ovov[nO*(g+nV*nO*a)]); ldc = nO*nV;
|
|
cublasSgeam(handle, CUBLAS_OP_N, CUBLAS_OP_N, nO, nO, &alpha, A, lda, &beta, B, ldb, C, ldc);
|
|
}
|
|
}
|
|
alpha = 1.0;
|
|
for (size_t v=0 ; v<nO ; ++v) {
|
|
for (size_t b=0 ; b<nV ; ++b) {
|
|
cublasSetStream(handle, stream[b]);
|
|
A = &(d_t2[nO*(v+nO*b)]); lda = nO*nO*nV;
|
|
B = &(d_t2[nO*(v+nO*b)]); ldb = nO*nO*nV;
|
|
C = &(d_Y_ovov[nO*nV*(v+nO*b)]); ldc = nO;
|
|
cublasSgeam(handle, CUBLAS_OP_N, CUBLAS_OP_N, nO, nV, &alpha, A, lda, &beta, B, ldb, C, ldc);
|
|
}
|
|
}
|
|
for (size_t i=0 ; i<nV ; ++i) {
|
|
cudaStreamDestroy(stream[i]);
|
|
}
|
|
cublasSetStream(handle, NULL);
|
|
|
|
float* d_Z_ovov;
|
|
cudaStat = cudaMalloc((void **)&d_Z_ovov, nO*nV*nO*nV * sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
|
|
alpha = 1.0;
|
|
beta = 0.0;
|
|
m=nO*nV; n=nO*nV; k=nO*nV;
|
|
A=d_X_ovov; lda=nO*nV;
|
|
B=d_Y_ovov; ldb=nO*nV;
|
|
C=d_Z_ovov; ldc=nO*nV;
|
|
cublasSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N, m, n, k, &alpha, A, lda, B, ldb, &beta, C, ldc);
|
|
|
|
cudaFree(d_X_ovov);
|
|
cudaFree(d_Y_ovov);
|
|
|
|
for (size_t i=0 ; i<nV ; ++i) {
|
|
cudaStreamCreate(&(stream[i]));
|
|
}
|
|
alpha = 1.0;
|
|
beta = -1.0;
|
|
for (size_t b=0 ; b<nV ; ++b) {
|
|
for (size_t g=0 ; g<nV ; ++g) {
|
|
cublasSetStream(handle, stream[g]);
|
|
A = &(d_r2[nO*nO*(b+nV*g)]); lda = nO;
|
|
B = &(d_Z_ovov[nO*(g+nV*nO*b)]); ldb = nO*nV;
|
|
C = &(d_r2[nO*nO*(b+nV*g)]); ldc = nO;
|
|
cublasSgeam(handle, CUBLAS_OP_N, CUBLAS_OP_N, nO, nO, &alpha, A, lda, &beta, B, ldb, C, ldc);
|
|
}
|
|
for (size_t g=0 ; g<nV ; ++g) {
|
|
cublasSetStream(handle, stream[g]);
|
|
A = &(d_r2[nO*nO*(b+nV*g)]); lda = nO;
|
|
B = &(d_Z_ovov[nO*(b+nV*nO*g)]); ldb = nO*nV;
|
|
C = &(d_r2[nO*nO*(b+nV*g)]); ldc = nO;
|
|
cublasSgeam(handle, CUBLAS_OP_N, CUBLAS_OP_T, nO, nO, &alpha, A, lda, &beta, B, ldb, C, ldc);
|
|
}
|
|
}
|
|
for (size_t i=0 ; i<nV ; ++i) {
|
|
cudaStreamDestroy(stream[i]);
|
|
}
|
|
cublasSetStream(handle, NULL);
|
|
cudaFree(d_Z_ovov);
|
|
|
|
}
|
|
} // end sections
|
|
|
|
cudaFree(d_K1);
|
|
|
|
float* d_tmp_cc;
|
|
lda = cholesky_mo_num * nV;
|
|
cudaStat = cudaMalloc((void **)&d_tmp_cc, lda * nV * sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
|
|
alpha=1.0; beta=0.0;
|
|
m=cholesky_mo_num*nV; n=nV; k=nO;
|
|
A = d_cc_space_v_vo_chol; B = d_t1; C = d_tmp_cc;
|
|
cublasSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N, m, n, k, &alpha, A, m, B, k, &beta, C, m);
|
|
|
|
float* d_tmp_cc2;
|
|
cudaStat = cudaMalloc((void **)&d_tmp_cc2, cholesky_mo_num*nV*sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
|
|
float* d_B1;
|
|
cudaStat = cudaMalloc((void**)&d_B1, nV*nV*BLOCK_SIZE*sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
|
|
float* d_tmpB1;
|
|
cudaStat = cudaMalloc((void**)&d_tmpB1, nV*BLOCK_SIZE*nV*sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
|
|
#pragma omp for
|
|
for (size_t gam=0 ; gam<nV ; ++gam)
|
|
{
|
|
float* d_tmp_cc_ = &(d_tmp_cc[gam*nV*cholesky_mo_num]);
|
|
float* d_cc_space_v_vv_chol_ = &(d_cc_space_v_vv_chol[gam*nV*cholesky_mo_num]);
|
|
|
|
alpha = 1.0;
|
|
beta = -1.0;
|
|
A = d_cc_space_v_vv_chol_; lda = cholesky_mo_num;
|
|
B = d_tmp_cc_; ldb = cholesky_mo_num;
|
|
C = d_tmp_cc2 ; ldc = cholesky_mo_num;
|
|
cublasSgeam(handle, CUBLAS_OP_N, CUBLAS_OP_N, cholesky_mo_num, nV, &alpha, A, lda, &beta, B, ldb, C, ldc);
|
|
|
|
for (size_t iblock=0 ; iblock<nV ; iblock += BLOCK_SIZE)
|
|
{
|
|
const size_t mbs = BLOCK_SIZE < nV-iblock ? BLOCK_SIZE : nV-iblock;
|
|
|
|
alpha=-1.0; beta=0.0;
|
|
m=nV*mbs; n=nV; k=cholesky_mo_num;
|
|
|
|
A=&(d_tmp_cc[iblock*cholesky_mo_num*nV]); lda=cholesky_mo_num;
|
|
B=d_cc_space_v_vv_chol_; ldb=cholesky_mo_num;
|
|
C=d_tmpB1 ; ldc=nV*BLOCK_SIZE;
|
|
cublasSgemm(handle, CUBLAS_OP_T, CUBLAS_OP_N, m, n, k, &alpha, A, lda, B, lda, &beta, C, ldc);
|
|
|
|
alpha=1.0; beta=1.0;
|
|
m=nV*mbs; n=nV; k=cholesky_mo_num;
|
|
|
|
A=&(d_cc_space_v_vv_chol[iblock*cholesky_mo_num*nV]); lda=cholesky_mo_num;
|
|
B=d_tmp_cc2; ldb=cholesky_mo_num;
|
|
C=d_tmpB1 ; ldc=nV*BLOCK_SIZE;
|
|
cublasSgemm(handle, CUBLAS_OP_T, CUBLAS_OP_N, m, n, k, &alpha, A, lda, B, lda, &beta, C, ldc);
|
|
|
|
for (size_t bet=iblock ; bet<(nV < iblock+BLOCK_SIZE ? nV : iblock+BLOCK_SIZE) ; ++bet)
|
|
{
|
|
alpha = 1.0;
|
|
beta = 0.0;
|
|
A = &(d_tmpB1[nV*(bet-iblock)]); lda = nV*BLOCK_SIZE;
|
|
B = d_tmpB1; ldb = nV;
|
|
C = &(d_B1[nV*nV*(bet-iblock)]) ; ldc = nV;
|
|
cublasSgeam(handle, CUBLAS_OP_N, CUBLAS_OP_N, nV, nV, &alpha, A, lda, &beta, B, ldb, C, ldc);
|
|
}
|
|
|
|
alpha=1.0; beta=1.0;
|
|
m=nO*nO; n=mbs; k=nV*nV;
|
|
A=d_tau; lda=nO*nO;
|
|
B=d_B1 ; ldb=nV*nV;
|
|
C=&(d_r2[nO*nO*(iblock + nV*gam)]); ldc=nO*nO;
|
|
cublasSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N, m, n, k, &alpha, A, lda, B, ldb, &beta, C, ldc);
|
|
|
|
}
|
|
}
|
|
cudaFree(d_tmpB1);
|
|
cudaFree(d_B1);
|
|
cudaFree(d_tmp_cc2);
|
|
cudaFree(d_tmp_cc);
|
|
|
|
float* r2_tmp = malloc((size_t) nO*nO*nV*nV*sizeof(float));
|
|
assert (r2_tmp != NULL);
|
|
lda=nO*nO;
|
|
cublasGetMatrix(nO*nO, nV*nV, sizeof(float), d_r2, lda, r2_tmp, lda);
|
|
#pragma omp critical
|
|
{
|
|
for (size_t i=0 ; i<(size_t) nO*nO*nV*nV ; ++i) {
|
|
r2[i] -= r2_tmp[i];
|
|
}
|
|
}
|
|
free(r2_tmp);
|
|
|
|
cudaFree(d_r2);
|
|
|
|
cublasDestroy(handle);
|
|
}
|
|
free(K1);
|
|
free(J1);
|
|
|
|
*max_r2 = 0.;
|
|
for (size_t i=0 ; i<(size_t) nO*nO*nV*nV ; ++i) {
|
|
const double x = r2[i] > 0. ? r2[i] : -r2[i];
|
|
*max_r2 = *max_r2 > x ? *max_r2 : x;
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void compute_r1_space_chol_gpu_sp(gpu_data_sp* data, int nO, int nV, double* t1, double* r1, double* max_r1)
|
|
{
|
|
const size_t cholesky_mo_num = data->cholesky_mo_num;
|
|
|
|
int ngpus = 1;
|
|
if (MULTIGPU == 1) cudaGetDeviceCount(&ngpus);
|
|
|
|
#pragma omp parallel num_threads(ngpus)
|
|
{
|
|
cudaError_t cudaStat;
|
|
size_t m,n,k, lda, ldb, ldc;
|
|
float alpha, beta;
|
|
float* A;
|
|
float* B;
|
|
float* C;
|
|
cudaStream_t stream[nV];
|
|
|
|
size_t igpu = omp_get_thread_num();
|
|
cudaSetDevice(igpu);
|
|
|
|
cublasHandle_t handle;
|
|
cublasCreate(&handle);
|
|
|
|
float* d_r1;
|
|
lda = nO ;
|
|
cudaStat = cudaMalloc((void **)&d_r1, lda * nV * sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
cudaMemset(d_r1, 0, nO*nV*sizeof(float));
|
|
memset(r1, 0, nO*nV*sizeof(double));
|
|
|
|
float* d_cc_space_v_vo_chol = data[igpu].cc_space_v_vo_chol;
|
|
float* d_cc_space_v_vv_chol = data[igpu].cc_space_v_vv_chol;
|
|
float* d_cc_space_v_oovo = data[igpu].cc_space_v_oovo;
|
|
float* d_cc_space_v_ovov = data[igpu].cc_space_v_ovov;
|
|
float* d_cc_space_v_voov = data[igpu].cc_space_v_voov;
|
|
float* d_cc_space_f_ov = data[igpu].cc_space_f_ov;
|
|
float* d_cc_space_f_vo = data[igpu].cc_space_f_vo;
|
|
float* d_tau = data[igpu].tau;
|
|
float* d_t1 = data[igpu].t1;
|
|
float* d_t2 = data[igpu].t2;
|
|
float* d_H_oo = data[igpu].H_oo;
|
|
float* d_H_vo = data[igpu].H_vo;
|
|
float* d_H_vv = data[igpu].H_vv;
|
|
|
|
#pragma omp sections
|
|
{
|
|
|
|
#pragma omp section
|
|
{
|
|
cublasScopy(handle, nO*nV, d_cc_space_f_ov, 1, d_r1, 1);
|
|
|
|
float* d_X_oo;
|
|
cudaStat = cudaMalloc((void **)&d_X_oo, nO*nO * sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
|
|
alpha = -2.0;
|
|
beta = 0.0;
|
|
m=nO; n=nO; k=nV;
|
|
A=d_t1; lda=nO;
|
|
B=d_cc_space_f_vo; ldb=nV;
|
|
C=d_X_oo; ldc=nO;
|
|
cublasSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N, m, n, k, &alpha, A, lda, B, ldb, &beta, C, ldc);
|
|
|
|
alpha = 1.0;
|
|
beta = 1.0;
|
|
m=nO; n=nV; k=nO;
|
|
A=d_X_oo; lda=nO;
|
|
B=d_t1; ldb=nO;
|
|
C=d_r1; ldc=nO;
|
|
cublasSgemm(handle, CUBLAS_OP_T, CUBLAS_OP_N, m, n, k, &alpha, A, lda, B, ldb, &beta, C, ldc);
|
|
|
|
cudaFree(d_X_oo);
|
|
}
|
|
|
|
#pragma omp section
|
|
{
|
|
alpha = 1.0;
|
|
beta = 1.0;
|
|
m=nO; n=nV; k=nV;
|
|
A=d_t1; lda=nO;
|
|
B=d_H_vv; ldb=nV;
|
|
C=d_r1; ldc=nO;
|
|
cublasSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N, m, n, k, &alpha, A, lda, B, ldb, &beta, C, ldc);
|
|
}
|
|
|
|
#pragma omp section
|
|
{
|
|
alpha = -1.0;
|
|
beta = 1.0;
|
|
m=nO; n=nV; k=nO;
|
|
A=d_H_oo; lda=nO;
|
|
B=d_t1; ldb=nO;
|
|
C=d_r1; ldc=nO;
|
|
cublasSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N, m, n, k, &alpha, A, lda, B, ldb, &beta, C, ldc);
|
|
}
|
|
|
|
#pragma omp section
|
|
{
|
|
float* d_X_voov;
|
|
cudaStat = cudaMalloc((void **)&d_X_voov, nV* nO* nO* nV * sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
|
|
for (size_t i=0 ; i<nV ; ++i) {
|
|
cudaStreamCreate(&(stream[i]));
|
|
}
|
|
alpha = -1.0;
|
|
for (size_t i=0 ; i<nO ; ++i) {
|
|
for (size_t bet=0 ; bet<nV ; ++bet) {
|
|
cublasSetStream(handle, stream[bet]);
|
|
beta = t1[i+bet*nO];
|
|
A = &(d_t2[nO*(i+nO*nV*bet)]); lda = nO*nO;
|
|
B = &(d_t1[0]); ldb = nO;
|
|
C = &(d_X_voov[nV*(i+nO*nO*bet)]); ldc = nV*nO;
|
|
cublasSgeam(handle, CUBLAS_OP_T, CUBLAS_OP_T, nV, nO, &alpha, A, lda, &beta, B, ldb, C, ldc);
|
|
}
|
|
}
|
|
cudaDeviceSynchronize();
|
|
alpha = 1.0;
|
|
beta = 2.0;
|
|
for (size_t bet=0 ; bet<nV ; ++bet) {
|
|
cublasSetStream(handle, stream[bet]);
|
|
A = &(d_X_voov[nV*nO*nO*bet]); lda = nV;
|
|
B = &(d_t2[nO*nO*nV*bet]); ldb = nO*nO;
|
|
C = A ; ldc = lda;
|
|
cublasSgeam(handle, CUBLAS_OP_N, CUBLAS_OP_T, nV, nO*nO, &alpha, A, lda, &beta, B, ldb, C, ldc);
|
|
}
|
|
for (size_t i=0 ; i<nV ; ++i) {
|
|
cudaStreamDestroy(stream[i]);
|
|
}
|
|
cublasSetStream(handle, NULL);
|
|
|
|
alpha = 1.0;
|
|
beta = 1.0;
|
|
m=nV*nO; n=nO*nV;
|
|
A=d_X_voov; lda=nV * nO;
|
|
B=d_H_vo; ldb=1;
|
|
C=d_r1; ldc=1;
|
|
cublasSgemv(handle, CUBLAS_OP_T, m, n, &alpha, A, lda, B, ldb, &beta, C, ldc);
|
|
|
|
cudaFree(d_X_voov);
|
|
}
|
|
|
|
#pragma omp section
|
|
{
|
|
float* d_X_ovov;
|
|
cudaStat = cudaMalloc((void **)&d_X_ovov, nO* nV* nO* nV * sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
cublasScopy(handle, nO*nV*nO*nV, d_cc_space_v_ovov, 1, d_X_ovov, 1);
|
|
|
|
for (size_t i=0 ; i<nV ; ++i) {
|
|
cudaStreamCreate(&(stream[i]));
|
|
}
|
|
alpha = -1.0;
|
|
beta = 2.0;
|
|
for (size_t u=0 ; u<nO ; ++u) {
|
|
for (size_t bet=0 ; bet<nV ; ++bet) {
|
|
cublasSetStream(handle, stream[bet]);
|
|
A = &(d_X_ovov[nO*nV*(u+nO*bet)]); lda = nO;
|
|
B = &(d_cc_space_v_voov[(nV*(u+nO*nO*bet))]); ldb = nV*nO;
|
|
C = A ; ldc = lda;
|
|
cublasSgeam(handle, CUBLAS_OP_N, CUBLAS_OP_T, nO, nV, &alpha, A, lda, &beta, B, ldb, C, ldc);
|
|
}
|
|
}
|
|
for (size_t i=0 ; i<nV ; ++i) {
|
|
cudaStreamDestroy(stream[i]);
|
|
}
|
|
cublasSetStream(handle, NULL);
|
|
|
|
alpha = 1.0;
|
|
beta = 1.0;
|
|
m=nO*nV; n=nO*nV;
|
|
A=d_X_ovov; lda=nO * nV;
|
|
B=d_t1; ldb=1;
|
|
C=d_r1; ldc=1;
|
|
cublasSgemv(handle, CUBLAS_OP_T, m, n, &alpha, A, lda, B, ldb, &beta, C, ldc);
|
|
|
|
cudaFree(d_X_ovov);
|
|
}
|
|
|
|
|
|
#pragma omp section
|
|
{
|
|
float* d_T_vvoo;
|
|
cudaStat = cudaMalloc((void **)&d_T_vvoo, nV*nV*nO*nO * sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
|
|
alpha = 0.0;
|
|
beta = 1.0;
|
|
A = d_T_vvoo; lda = nV*nV;
|
|
B = d_tau; ldb = nO*nO;
|
|
C = A ; ldc = lda;
|
|
cublasSgeam(handle, CUBLAS_OP_N, CUBLAS_OP_T, nV*nV, nO*nO, &alpha, A, lda, &beta, B, ldb, C, ldc);
|
|
|
|
float* d_W_vvov;
|
|
cudaStat = cudaMalloc((void **)&d_W_vvov, nV*nV*nO*BLOCK_SIZE * sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
|
|
float* d_W_vvov_tmp;
|
|
cudaStat = cudaMalloc((void **)&d_W_vvov_tmp, nV*nO*nV*BLOCK_SIZE * sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
|
|
|
|
for (size_t iblock=0 ; iblock<nV ; iblock += BLOCK_SIZE) {
|
|
const size_t mbs = BLOCK_SIZE < nV-iblock ? BLOCK_SIZE : nV-iblock;
|
|
|
|
alpha = 1.0;
|
|
beta = 0.0;
|
|
m=nV*nO; n=nV*mbs; k=cholesky_mo_num;
|
|
A=d_cc_space_v_vo_chol; lda=cholesky_mo_num;
|
|
B=&(d_cc_space_v_vv_chol[cholesky_mo_num*nV*iblock]); ldb=cholesky_mo_num;
|
|
C=d_W_vvov_tmp; ldc=nV*nO;
|
|
cublasSgemm(handle, CUBLAS_OP_T, CUBLAS_OP_N, m, n, k, &alpha, A, lda, B, ldb, &beta, C, ldc);
|
|
|
|
alpha = 2.0;
|
|
beta = -1.0;
|
|
size_t kk=0;
|
|
for (size_t i=0 ; i<nV ; ++i) {
|
|
cudaStreamCreate(&(stream[i]));
|
|
}
|
|
for (size_t i=0 ; i<nO ; ++i) {
|
|
for (size_t bet=0 ; bet<mbs ; ++bet) {
|
|
cublasSetStream(handle, stream[kk]);
|
|
++kk;
|
|
if (kk >= nV) kk = 0;
|
|
A = &(d_W_vvov_tmp[nV*(i+nO*nV*bet)]); lda = nV*nO;
|
|
B = &(d_W_vvov_tmp[nV*(i+nO*nV*bet)]); ldb = nV*nO;
|
|
C = &(d_W_vvov[nV*nV*(i+nO*bet)]); ldc = nV;
|
|
cublasSgeam(handle, CUBLAS_OP_N, CUBLAS_OP_T, nV, nV, &alpha, A, lda, &beta, B, ldb, C, ldc);
|
|
}
|
|
}
|
|
for (size_t i=0 ; i<nV ; ++i) {
|
|
cudaStreamDestroy(stream[i]);
|
|
}
|
|
cublasSetStream(handle, NULL);
|
|
|
|
alpha = 1.0;
|
|
beta = 1.0;
|
|
m=nO; n=mbs; k=nO*nV*nV;
|
|
A=d_T_vvoo; lda=nV*nV*nO;
|
|
B=d_W_vvov; ldb=nO*nV*nV;
|
|
C=&(d_r1[nO*iblock]); ldc=nO;
|
|
cublasSgemm(handle, CUBLAS_OP_T, CUBLAS_OP_N, m, n, k, &alpha, A, lda, B, ldb, &beta, C, ldc);
|
|
|
|
}
|
|
cudaFree(d_W_vvov);
|
|
cudaFree(d_W_vvov_tmp);
|
|
cudaFree(d_T_vvoo);
|
|
}
|
|
|
|
#pragma omp section
|
|
{
|
|
float* d_W_oovo;
|
|
cudaStat = cudaMalloc((void **)&d_W_oovo, nO*nO*nV*nO * sizeof(float));
|
|
assert(cudaStat == cudaSuccess);
|
|
|
|
alpha = 2.0;
|
|
beta = -1.0;
|
|
for (size_t i=0 ; i<nV ; ++i) {
|
|
cudaStreamCreate(&(stream[i]));
|
|
}
|
|
for (size_t u=0 ; u<nO ; ++u) {
|
|
for (size_t a=0 ; a<nV ; ++a) {
|
|
cublasSetStream(handle, stream[a]);
|
|
A = &(d_cc_space_v_oovo[nO*nO*(a+nV*u)]); lda = nO;
|
|
B = &(d_cc_space_v_oovo[nO*nO*(a+nV*u)]); ldb = nO;
|
|
C = &(d_W_oovo[nO*nO*(a+nV*u)]); ldc = nO;
|
|
cublasSgeam(handle, CUBLAS_OP_N, CUBLAS_OP_T, nO, nO, &alpha, A, lda, &beta, B, ldb, C, ldc);
|
|
}
|
|
}
|
|
for (size_t i=0 ; i<nV ; ++i) {
|
|
cudaStreamDestroy(stream[i]);
|
|
}
|
|
cublasSetStream(handle, NULL);
|
|
|
|
alpha = -1.0;
|
|
beta = 1.0;
|
|
m=nO; n=nV; k=nO*nO*nV;
|
|
A=d_W_oovo; lda=nO * nO * nV;
|
|
B=d_tau; ldb=nO * nO * nV;
|
|
C=d_r1; ldc=nO;
|
|
cublasSgemm(handle, CUBLAS_OP_T, CUBLAS_OP_N, m, n, k, &alpha, A, lda, B, ldb, &beta, C, ldc);
|
|
|
|
}
|
|
}
|
|
|
|
float* r1_tmp = malloc((size_t) nO*nV*sizeof(float));
|
|
assert (r1_tmp != NULL);
|
|
lda=nO;
|
|
cublasGetMatrix(nO, nV, sizeof(float), d_r1, lda, r1_tmp, lda);
|
|
#pragma omp critical
|
|
{
|
|
for (size_t i=0 ; i<(size_t) nO*nV ; ++i) {
|
|
r1[i] -= r1_tmp[i];
|
|
}
|
|
}
|
|
free(r1_tmp);
|
|
|
|
cudaFree(d_r1);
|
|
|
|
cublasDestroy(handle);
|
|
}
|
|
|
|
*max_r1 = 0.;
|
|
for (size_t i=0 ; i<(size_t) nO*nV ; ++i) {
|
|
const double x = r1[i] > 0. ? r1[i] : -r1[i];
|
|
*max_r1 = *max_r1 > x ? *max_r1 : x;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
double ccsd_energy_space_gpu_sp(gpu_data_sp* data)
|
|
{
|
|
double result = 0.0;
|
|
|
|
const size_t nO = data->nO;
|
|
const size_t nV = data->nV;
|
|
|
|
int ngpus = 1;
|
|
if (MULTIGPU == 1) cudaGetDeviceCount(&ngpus);
|
|
|
|
#pragma omp parallel num_threads(ngpus)
|
|
{
|
|
cudaError_t cudaStat;
|
|
size_t igpu = omp_get_thread_num();
|
|
cudaSetDevice(igpu);
|
|
|
|
cublasHandle_t handle;
|
|
cublasCreate(&handle);
|
|
|
|
double result_local = 0.0;
|
|
#pragma omp sections
|
|
{
|
|
#pragma omp section
|
|
{
|
|
float* d_cc_space_f_ov = data[igpu].cc_space_f_ov;
|
|
float* d_t1 = data[igpu].t1;
|
|
float x;
|
|
cublasSdot(handle, nO*nV, d_cc_space_f_ov, 1, d_t1, 1, &x);
|
|
result_local += 2.0*x;
|
|
}
|
|
#pragma omp section
|
|
{
|
|
float* d_tau_x = data[igpu].tau_x;
|
|
float* d_cc_space_v_oovv = data[igpu].cc_space_v_oovv;
|
|
float x;
|
|
cublasSdot(handle, nO*nO*nV*nV, d_tau_x, 1, d_cc_space_v_oovv, 1, &x);
|
|
result_local += x;
|
|
}
|
|
}
|
|
cublasDestroy(handle);
|
|
#pragma omp critical
|
|
{
|
|
result += result_local;
|
|
}
|
|
}
|
|
return result;
|
|
}
|