1
0
mirror of https://gitlab.com/scemama/qp_plugins_scemama.git synced 2024-12-31 16:45:45 +01:00
qp_plugins_scemama/devel/svdwf/printSQ_ij_T_kl.irp.f
2021-11-02 16:18:07 +01:00

258 lines
9.5 KiB
Fortran

program printSQ_ij_T_kl
implicit none
BEGIN_DOC
! perturbative approach to build psi_postsvd
END_DOC
read_wf = .True.
TOUCH read_wf
PROVIDE N_int
call run()
end
subroutine run
USE OMP_LIB
USE bitmasks
implicit none
integer(bit_kind) :: det1(N_int,2), det2(N_int,2)
integer :: degree, i_state
double precision :: h12
integer :: i, j, k, l
double precision, allocatable :: T(:,:,:,:)
double precision :: ti, tf
integer :: nb_taches
!$OMP PARALLEL
nb_taches = OMP_GET_NUM_THREADS()
!$OMP END PARALLEL
call wall_time(ti)
i_state = 1
det1(:,1) = psi_det_alpha_unique(:,1)
det2(:,1) = psi_det_alpha_unique(:,1)
det1(:,2) = psi_det_beta_unique(:,1)
det2(:,2) = psi_det_beta_unique(:,1)
call get_excitation_degree_spin(det1(1,1),det2(1,1),degree,N_int)
call get_excitation_degree(det1,det2,degree,N_int)
call i_H_j(det1, det2, N_int, h12)
! ---------------------------------------------------------------------------------------
! construct the initial CI matrix
print *, ' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~'
print *, ' CI matrix :', n_det_alpha_unique,'x',n_det_beta_unique
print *, ' N det :', N_det
print *, ' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~'
! ---------------------------------------------------------------------------------------
! ---------------------------------------------------------------------------------------
allocate( T(n_det_alpha_unique,n_det_beta_unique,n_det_alpha_unique,n_det_beta_unique) )
call const_2b(T)
open(UNIT=11, FILE="ij_T_kl.dat", ACTION="WRITE")
do i = 1, n_det_alpha_unique
do j = 1, n_det_beta_unique
do k = 1, n_det_alpha_unique
do l = 1, n_det_beta_unique
write(11, '(E15.7)') T(i,j,k,l)
!write(11, '(4(I5,2X), 5X, E15.7)') i, j, k, l, T(i,j,k,l)
enddo
enddo
enddo
enddo
close(11)
deallocate( T )
call wall_time(tf)
print *, ' ___________________________________________________________________'
print *, ' '
!print *, " Execution avec ", nb_taches, " threads"
print *, " Execution avec 1 threads"
print *, " total elapsed time (min) = ", (tf-ti)/60.d0
print *, ' ___________________________________________________________________'
end
!/-\! !/-\! !/-\! !/-\! !/-\! !/-\! !/-\! !/-\! !/-\!
!---! !---! !---! !---! !---! !---! !---! !---! !---!
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
!___! !___! !___! !___! !___! !___! !___! !___! !___!
!___! !___! !___! !___! !___! !___! !___! !___! !___!
!/-\! !/-\! !/-\! !/-\! !/-\! !/-\! !/-\! !/-\! !/-\!
!---! !---! !---! !---! !---! !---! !---! !---! !---!
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
!___! !___! !___! !___! !___! !___! !___! !___! !___!
!___! !___! !___! !___! !___! !___! !___! !___! !___!
!/-\! !/-\! !/-\! !/-\! !/-\! !/-\! !/-\! !/-\! !/-\!
!---! !---! !---! !---! !---! !---! !---! !---! !---!
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
!___! !___! !___! !___! !___! !___! !___! !___! !___!
!___! !___! !___! !___! !___! !___! !___! !___! !___!
!/-\! !/-\! !/-\! !/-\! !/-\! !/-\! !/-\! !/-\! !/-\!
!---! !---! !---! !---! !---! !---! !---! !---! !---!
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
!___! !___! !___! !___! !___! !___! !___! !___! !___!
!___! !___! !___! !___! !___! !___! !___! !___! !___!
subroutine const_2b(T)
USE bitmasks
implicit none
double precision, external :: get_two_e_integral
double precision, intent(out) :: T(n_det_alpha_unique,n_det_beta_unique,n_det_alpha_unique,n_det_beta_unique )
integer :: na, nb
integer :: i, k, j, l
integer(bit_kind) :: psi_ij(N_int,2), psi_kl(N_int,2)
double precision :: phase
integer :: degree, h1, h2, p1, p2, s1, s2, e1, e2
integer :: ii, jj
integer :: exc(0:2,2,2)
integer :: occ(N_int*bit_kind_size,2), n_occ_alpha
double precision :: two_body_fact
na = n_det_alpha_unique
nb = n_det_beta_unique
T(:,:,:,:) = 0.d0
! -----------------------------------------------------------------------------------------------------------------
do i = 1, na
psi_ij(1:N_int,1) = psi_det_alpha_unique(1:N_int,i)
do j = 1, nb
psi_ij(1:N_int,2) = psi_det_beta_unique(1:N_int,j)
call bitstring_to_list(psi_ij(1,1), occ(1,1), n_occ_alpha, N_int)
call bitstring_to_list(psi_ij(1,2), occ(1,2), n_occ_alpha, N_int)
do k = 1, na
psi_kl(1:N_int,1) = psi_det_alpha_unique(1:N_int,k)
do l = 1, nb
psi_kl(1:N_int,2) = psi_det_beta_unique(1:N_int,l)
call get_excitation_degree(psi_ij, psi_kl, degree, N_int)
two_body_fact = 0.d0
if(degree .eq. 2) then
call get_double_excitation(psi_ij, psi_kl, exc, phase, N_int)
call decode_exc(exc, degree, h1, p1, h2, p2, s1, s2)
select case(s1+s2)
case(2,4)
two_body_fact += phase * get_two_e_integral(h1, h2, p1, p2, mo_integrals_map)
two_body_fact -= phase * get_two_e_integral(h1, h2, p2, p1, mo_integrals_map)
case(3)
two_body_fact += 0.5d0 * phase * get_two_e_integral(h1, h2, p1, p2, mo_integrals_map)
two_body_fact += 0.5d0 * phase * get_two_e_integral(h2, h1, p2, p1, mo_integrals_map)
end select
else if(degree .eq. 1) then
call get_single_excitation(psi_ij, psi_kl, exc, phase, N_int)
call decode_exc(exc, degree, h1, p1, h2, p2, s1, s2)
select case(s1)
case(1)
do ii = 1, elec_alpha_num
p2 = occ(ii,1)
h2 = p2
two_body_fact += 0.5d0 * phase * get_two_e_integral(h1, h2, p1, p2, mo_integrals_map)
two_body_fact -= 0.5d0 * phase * get_two_e_integral(h1, h2, p2, p1, mo_integrals_map)
two_body_fact += 0.5d0 * phase * get_two_e_integral(h2, h1, p2, p1, mo_integrals_map)
two_body_fact -= 0.5d0 * phase * get_two_e_integral(h2, h1, p1, p2, mo_integrals_map)
enddo
do ii = 1, elec_beta_num
p2 = occ(ii,2)
h2 = p2
two_body_fact += 0.5d0 * phase * get_two_e_integral(h1, h2, p1, p2, mo_integrals_map)
two_body_fact += 0.5d0 * phase * get_two_e_integral(h2, h1, p2, p1, mo_integrals_map)
enddo
case(2)
do ii = 1, elec_alpha_num
p2 = occ(ii,1)
h2 = p2
two_body_fact += 0.5d0 * phase * get_two_e_integral(h1, h2, p1, p2, mo_integrals_map)
two_body_fact += 0.5d0 * phase * get_two_e_integral(h2, h1, p2, p1, mo_integrals_map)
enddo
do ii = 1, elec_beta_num
p2 = occ(ii,2)
h2 = p2
two_body_fact += 0.5d0 * phase * get_two_e_integral(h1, h2, p1, p2, mo_integrals_map)
two_body_fact -= 0.5d0 * phase * get_two_e_integral(h1, h2, p2, p1, mo_integrals_map)
two_body_fact += 0.5d0 * phase * get_two_e_integral(h2, h1, p2, p1, mo_integrals_map)
two_body_fact -= 0.5d0 * phase * get_two_e_integral(h2, h1, p1, p2, mo_integrals_map)
enddo
end select
else if(degree .eq. 0) then
do ii = 1, elec_alpha_num
e1 = occ(ii,1)
do jj = 1, elec_alpha_num
e2 = occ(jj,1)
two_body_fact += 0.5d0 * get_two_e_integral(e1, e2, e1, e2, mo_integrals_map)
two_body_fact -= 0.5d0 * get_two_e_integral(e1, e2, e2, e1, mo_integrals_map)
enddo
do jj = 1, elec_beta_num
e2 = occ(jj,2)
two_body_fact += 0.5d0 * get_two_e_integral(e1, e2, e1, e2, mo_integrals_map)
two_body_fact += 0.5d0 * get_two_e_integral(e2, e1, e2, e1, mo_integrals_map)
enddo
enddo
do ii = 1, elec_beta_num
e1 = occ(ii,2)
do jj = 1, elec_beta_num
e2 = occ(jj,2)
two_body_fact += 0.5d0 * get_two_e_integral(e1, e2, e1, e2, mo_integrals_map)
two_body_fact -= 0.5d0 * get_two_e_integral(e1, e2, e2, e1, mo_integrals_map)
enddo
enddo
end if
T(i,j,k,l) = two_body_fact
enddo
enddo
enddo
enddo
! -----------------------------------------------------------------------------------------------------------------
return
end subroutine const_2b