mirror of
https://gitlab.com/scemama/qp_plugins_scemama.git
synced 2024-12-22 20:34:05 +01:00
251 lines
7.4 KiB
Fortran
251 lines
7.4 KiB
Fortran
program delta_FSVD_v0
|
|
|
|
BEGIN_DOC
|
|
! !!!
|
|
END_DOC
|
|
|
|
implicit none
|
|
|
|
read_wf = .True.
|
|
touch read_wf
|
|
|
|
my_grid_becke = .True.
|
|
my_n_pt_r_grid = 30
|
|
my_n_pt_a_grid = 170
|
|
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
|
|
|
|
extra_grid_type_sgn = 1
|
|
touch extra_grid_type_sgn
|
|
|
|
my_extra_grid_becke = .False.
|
|
touch my_extra_grid_becke
|
|
|
|
print*,'Warning : the Becke grid parameters are automatically set to '
|
|
print*,'my_n_pt_a_grid = ',my_n_pt_a_grid
|
|
print*,'my_n_pt_r_grid = ',my_n_pt_r_grid
|
|
if(linear_tc) then
|
|
three_body_h_tc = .False.
|
|
touch three_body_h_tc
|
|
grad_squared = .False.
|
|
touch grad_squared
|
|
endif
|
|
if(read_tc_ints) then
|
|
call read_fcidump_1_tc
|
|
endif
|
|
|
|
call run()
|
|
|
|
end
|
|
|
|
|
|
|
|
subroutine run()
|
|
|
|
implicit none
|
|
|
|
integer :: ii, ii_i, ii_j, k, l
|
|
integer :: na, nb, nsvd
|
|
double precision, allocatable :: U(:,:), V(:,:), S(:)
|
|
double precision, allocatable :: deltaDet_ex(:), deltaDet_ap(:), deltaSVD_kl(:,:)
|
|
|
|
na = n_det_alpha_unique
|
|
nb = n_det_beta_unique
|
|
|
|
! read SVD vectors
|
|
call ezfio_get_spindeterminants_n_svd_coefs(nsvd)
|
|
allocate( U(na,nsvd), S(nsvd), V(nb,nsvd) )
|
|
call ezfio_get_spindeterminants_psi_svd_alpha(U)
|
|
call ezfio_get_spindeterminants_psi_svd_beta (V)
|
|
call ezfio_get_spindeterminants_psi_svd_coefs(S)
|
|
|
|
!allocate( deltaSVD_kk(nsvd) )
|
|
!call obtenir_deltaSVD_kk(nsvd, U, V, deltaSVD_kk)
|
|
allocate( deltaSVD_kl(nsvd,nsvd) )
|
|
call obtenir_deltaSVD_kl(nsvd, U, V, deltaSVD_kl)
|
|
|
|
allocate( deltaDet_ex(N_det) , deltaDet_ap(N_det) )
|
|
do ii = 1, N_det
|
|
ii_i = psi_bilinear_matrix_rows (ii)
|
|
ii_j = psi_bilinear_matrix_columns(ii)
|
|
|
|
deltaDet_ex(ii) = 0.d0
|
|
deltaDet_ap(ii) = 0.d0
|
|
do k = 1, nsvd
|
|
deltaDet_ap(ii) = deltaDet_ap(ii) + U(ii_i,k) * V(ii_j,k) * deltaSVD_kl(k,k)
|
|
do l = 1, nsvd
|
|
deltaDet_ex(ii) = deltaDet_ex(ii) + U(ii_i,k) * V(ii_j,l) * deltaSVD_kl(k,l)
|
|
enddo
|
|
enddo
|
|
|
|
print *, deltaDet_ex(ii) , deltaDet_ap(ii)
|
|
enddo
|
|
|
|
!call ezfio_set_dmc_dress_dmc_delta_h(delta_Det_ex)
|
|
|
|
deallocate( U , S , V )
|
|
deallocate( deltaSVD_kl )
|
|
deallocate( deltaDet_ex , deltaDet_ap )
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
! _______________________________________________________________________________________________________
|
|
!
|
|
! [ delta_SVD ]_kk = < dup_SVD ddn_SVD | H_tilde - H | psi >
|
|
! = \sum_{i,j} U_{i,k} V_{j,k} < dup_i ddn_j | H_tilde - H | psi >
|
|
!
|
|
subroutine obtenir_deltaSVD_kk(nsvd, U, V, deltaSVD_kk)
|
|
|
|
implicit none
|
|
|
|
integer, intent(in) :: nsvd
|
|
double precision, intent(in) :: U(n_det_alpha_unique,nsvd), V(n_det_beta_unique,nsvd)
|
|
double precision, intent(out) :: deltaSVD_kk(nsvd)
|
|
|
|
integer :: i_state, na, nb
|
|
integer :: k, ii, jj, ii_i, ii_j, jj_i, jj_j
|
|
double precision :: tmp_k, tmp_ij, coef_jj
|
|
|
|
integer(bit_kind) :: det_ii(N_int,2), det_jj(N_int,2)
|
|
double precision :: hmono, heff, hderiv, hthree, htilde_ij, hij, delta_mat
|
|
|
|
PROVIDE scalar_mu_r_pot_physicist_mo deriv_mu_r_pot_physicist_mo
|
|
PROVIDE three_body_3_index three_body_3_index_exch_12 three_body_3_index_exch_13 three_body_3_index_exch_23
|
|
PROVIDE three_body_5_index three_body_5_index_exch_13 three_body_5_index_exch_32
|
|
PROVIDE three_body_4_index three_body_4_index_exch_12 three_body_4_index_exch_12_part
|
|
|
|
|
|
i_state = 1
|
|
na = n_det_alpha_unique
|
|
nb = n_det_beta_unique
|
|
|
|
deltaSVD_kk(:) = 0.d0
|
|
do k = 1, nsvd
|
|
|
|
tmp_k = 0.d0
|
|
do ii = 1, N_det
|
|
ii_i = psi_bilinear_matrix_rows (ii)
|
|
ii_j = psi_bilinear_matrix_columns(ii)
|
|
|
|
det_ii(:,1) = psi_det_alpha_unique(:,ii_i)
|
|
det_ii(:,2) = psi_det_beta_unique (:,ii_j)
|
|
|
|
!tmp_ij = < dup_i ddn_j | H_tilde - H | psi >
|
|
tmp_ij = 0.d0
|
|
do jj = 1, N_det
|
|
jj_i = psi_bilinear_matrix_rows (jj)
|
|
jj_j = psi_bilinear_matrix_columns(jj)
|
|
|
|
coef_jj = psi_bilinear_matrix_values(jj,i_state)
|
|
det_jj(:,1) = psi_det_alpha_unique(:,jj_i)
|
|
det_jj(:,2) = psi_det_beta_unique (:,jj_j)
|
|
|
|
call htilde_mat(det_ii, det_jj, hmono, heff, hderiv, hthree, htilde_ij)
|
|
call i_H_j(det_ii, det_jj, N_int, hij)
|
|
delta_mat = htilde_ij - hij
|
|
|
|
tmp_ij = tmp_ij + coef_jj * delta_mat
|
|
enddo
|
|
|
|
tmp_k = tmp_k + U(ii_i,k) * V(ii_j,k) * tmp_ij
|
|
enddo
|
|
|
|
deltaSVD_kk(k) = tmp_k
|
|
enddo
|
|
|
|
return
|
|
end subroutine obtenir_deltaSVD_kk
|
|
! _______________________________________________________________________________________________________
|
|
! _______________________________________________________________________________________________________
|
|
|
|
|
|
|
|
|
|
|
|
|
|
! _______________________________________________________________________________________________________
|
|
!
|
|
! [ delta_SVD ]_kl = < dup_SVD ddn_SVD | H_tilde - H | psi >
|
|
! = \sum_{i,j} U_{i,k} V_{j,l} < dup_i ddn_j | H_tilde - H | psi >
|
|
!
|
|
subroutine obtenir_deltaSVD_kl(nsvd, U, V, deltaSVD_kl)
|
|
|
|
implicit none
|
|
|
|
integer, intent(in) :: nsvd
|
|
double precision, intent(in) :: U(n_det_alpha_unique,nsvd), V(n_det_beta_unique,nsvd)
|
|
double precision, intent(out) :: deltaSVD_kl(nsvd,nsvd)
|
|
|
|
integer :: i_state, na, nb
|
|
integer :: k, l, ii, jj, ii_i, ii_j, jj_i, jj_j
|
|
double precision :: tmp_kl, tmp_ij, coef_jj
|
|
|
|
integer(bit_kind) :: det_ii(N_int,2), det_jj(N_int,2)
|
|
double precision :: hmono, heff, hderiv, hthree, htilde_ij, hij, delta_mat
|
|
|
|
PROVIDE scalar_mu_r_pot_physicist_mo deriv_mu_r_pot_physicist_mo
|
|
PROVIDE three_body_3_index three_body_3_index_exch_12 three_body_3_index_exch_13 three_body_3_index_exch_23
|
|
PROVIDE three_body_5_index three_body_5_index_exch_13 three_body_5_index_exch_32
|
|
PROVIDE three_body_4_index three_body_4_index_exch_12 three_body_4_index_exch_12_part
|
|
|
|
i_state = 1
|
|
na = n_det_alpha_unique
|
|
nb = n_det_beta_unique
|
|
|
|
! ! !
|
|
det_ii(:,1) = psi_det_alpha_unique(:,1)
|
|
det_ii(:,2) = psi_det_beta_unique (:,1)
|
|
det_jj(:,1) = psi_det_alpha_unique(:,1)
|
|
det_jj(:,2) = psi_det_beta_unique (:,1)
|
|
call htilde_mat(det_ii, det_jj, hmono, heff, hderiv, hthree, htilde_ij)
|
|
call i_H_j(det_ii, det_jj, N_int, hij)
|
|
! ! !
|
|
|
|
|
|
print *, ' --- start delta SVD calcul ---'
|
|
|
|
deltaSVD_kl(:,:) = 0.d0
|
|
do k = 1, nsvd
|
|
do l = 1, nsvd
|
|
|
|
tmp_kl = 0.d0
|
|
do ii = 1, N_det
|
|
ii_i = psi_bilinear_matrix_rows (ii)
|
|
ii_j = psi_bilinear_matrix_columns(ii)
|
|
|
|
det_ii(:,1) = psi_det_alpha_unique(:,ii_i)
|
|
det_ii(:,2) = psi_det_beta_unique (:,ii_j)
|
|
|
|
!tmp_ij = < dup_i ddn_j | H_tilde - H | psi >
|
|
tmp_ij = 0.d0
|
|
do jj = 1, N_det
|
|
jj_i = psi_bilinear_matrix_rows (jj)
|
|
jj_j = psi_bilinear_matrix_columns(jj)
|
|
|
|
coef_jj = psi_bilinear_matrix_values(jj,i_state)
|
|
det_jj(:,1) = psi_det_alpha_unique(:,jj_i)
|
|
det_jj(:,2) = psi_det_beta_unique (:,jj_j)
|
|
|
|
call htilde_mat(det_ii, det_jj, hmono, heff, hderiv, hthree, htilde_ij)
|
|
call i_H_j(det_ii, det_jj, N_int, hij)
|
|
delta_mat = htilde_ij - hij
|
|
|
|
tmp_ij = tmp_ij + coef_jj * delta_mat
|
|
enddo
|
|
|
|
tmp_kl = tmp_kl + U(ii_i,k) * V(ii_j,l) * tmp_ij
|
|
enddo
|
|
|
|
deltaSVD_kl(k,l) = tmp_kl
|
|
enddo
|
|
enddo
|
|
|
|
print *, ' --- end delta SVD calcul ---'
|
|
|
|
return
|
|
end subroutine obtenir_deltaSVD_kl
|
|
! _______________________________________________________________________________________________________
|
|
! _______________________________________________________________________________________________________
|