mirror of
https://gitlab.com/scemama/qp_plugins_scemama.git
synced 2025-01-10 21:18:17 +01:00
144 lines
4.0 KiB
Python
144 lines
4.0 KiB
Python
#!/usr/bin/env python3
|
|
|
|
import os, sys
|
|
|
|
#QP_PATH=os.environ["QMCCHEM_PATH"]
|
|
#sys.path.insert(0,QMCCHEM_PATH+"/EZFIO/Python/")
|
|
|
|
import scipy
|
|
from scipy import linalg
|
|
|
|
from ezfio import ezfio
|
|
from datetime import datetime
|
|
import numpy as np
|
|
import time
|
|
|
|
|
|
|
|
|
|
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
|
def get_Aref():
|
|
|
|
Aref = np.zeros( (n_alpha, n_beta) )
|
|
for k in range(n_det):
|
|
i = A_rows[k] - 1
|
|
j = A_cols[k] - 1
|
|
Aref[i,j] = A_vals[0][k]
|
|
|
|
return( Aref )
|
|
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
|
|
|
|
|
|
|
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
|
def powit_RSVD(X, n_TSVD, nb_powit, nb_oversamp):
|
|
|
|
print(" --- begin powit_RSVD --- ")
|
|
print(" n_TSVD = {}".format(n_TSVD))
|
|
print(" pow it = {} & nb oversampling = {}".
|
|
format(nb_powit,nb_oversamp))
|
|
|
|
G = np.random.randn(X.shape[1], n_TSVD+nb_oversamp)
|
|
Q = QR_fact( np.dot(X,G) )
|
|
|
|
for i in range(nb_powit):
|
|
ti = time.time()
|
|
print(" start pow it = {}".format(i))
|
|
|
|
Q = QR_fact( np.dot(X.T,Q) )
|
|
Q = QR_fact( np.dot(X,Q) )
|
|
|
|
tf = time.time()
|
|
dt = (tf-ti)/60.
|
|
print(" end pow it = {} after {} min".format(i,dt))
|
|
|
|
Y = np.dot(Q.T,X)
|
|
|
|
U, S, VT = np.linalg.svd(Y, full_matrices=1)
|
|
U = np.dot(Q,U)
|
|
|
|
print( " --- end powit_RSVD --- \n")
|
|
return U, S, VT
|
|
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
|
|
|
|
|
|
|
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
|
def QR_fact(X):
|
|
|
|
Q, _ = linalg.qr(X, mode="full")
|
|
#Q,R = np.linalg.qr(X, mode="complete")
|
|
#D = np.diag( np.sign( np.diag(R) ) )
|
|
Qunique = Q #np.dot(Q,D)
|
|
#Runique = np.dot(D,R)
|
|
|
|
return(Qunique)
|
|
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
|
|
|
|
|
|
|
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
|
def TSVD_save_EZFIO():
|
|
|
|
U_toEZFIO = np.zeros( ( 1, U.shape[1], U.shape[0] ) )
|
|
V_toEZFIO = np.zeros( ( 1, V.shape[1], V.shape[0] ) )
|
|
U_toEZFIO[0,:,:] = U_TSVD.T
|
|
V_toEZFIO[0,:,:] = V_TSVD.T
|
|
|
|
ezfio.set_spindeterminants_n_svd_coefs( n_TSVD )
|
|
ezfio.set_spindeterminants_psi_svd_alpha( U_toEZFIO )
|
|
ezfio.set_spindeterminants_psi_svd_beta ( V_toEZFIO )
|
|
ezfio.set_spindeterminants_psi_svd_coefs( S_RSVD )
|
|
|
|
print(' SVD vectors & coeff are saved to EZFIO ')
|
|
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
|
print("")
|
|
print(" Today's date:", datetime.now() )
|
|
|
|
# EZFIO file
|
|
#EZFIO_file = "/home/aammar/qp2/src/svdwf/h2o_work/FN_test/cc_pCVDZ/h2o_dz"
|
|
EZFIO_file = "/home/aammar/qp2/src/svdwf/h2o_work/FN_test/cipsi_calcul/h2o_dz_fci"
|
|
ezfio.set_file(EZFIO_file)
|
|
print(" EZFIO = {}\n".format(EZFIO_file))
|
|
|
|
#read_wf = True
|
|
#ezfio.read_wf = True
|
|
#TOUCH read_wf
|
|
|
|
|
|
n_det = ezfio.get_spindeterminants_n_det()
|
|
print(' n_det = {}'.format(n_det))
|
|
|
|
n_alpha = ezfio.get_spindeterminants_n_det_alpha()
|
|
n_beta = ezfio.get_spindeterminants_n_det_beta()
|
|
print(' matrix dimensions = {} x {} = {} \n'.format(n_alpha, n_beta, n_alpha*n_beta))
|
|
|
|
A_rows = np.array(ezfio.get_spindeterminants_psi_coef_matrix_rows())
|
|
A_cols = np.array(ezfio.get_spindeterminants_psi_coef_matrix_columns())
|
|
A_vals = np.array(ezfio.get_spindeterminants_psi_coef_matrix_values())
|
|
Aref = get_Aref()
|
|
A_norm = np.linalg.norm(Aref, ord='fro')
|
|
|
|
|
|
npow = 15
|
|
nb_oversamp = 10
|
|
n_TSVD = 100 #min(n_alpha,n_beta)
|
|
|
|
t_beg = time.time()
|
|
U, S_RSVD, Vt = powit_RSVD(Aref, n_TSVD, npow, nb_oversamp)
|
|
print(' powit_RSVD time = {}\n'.format((time.time()-t_beg)/60.))
|
|
|
|
S_mat = np.zeros((n_alpha,n_beta))
|
|
for i in range(n_TSVD):
|
|
S_mat[i,i] = S_RSVD[i]
|
|
err_SVD = 100. * np.linalg.norm( Aref - np.dot(U,np.dot(S_mat,Vt)), ord="fro") / A_norm
|
|
print(' powit_RSVD error (%) = {} \n'.format(err_SVD))
|
|
#______________________________________________________________________________________________________________________
|