1
0
mirror of https://gitlab.com/scemama/qp_plugins_scemama.git synced 2025-01-10 13:08:15 +01:00
qp_plugins_scemama/devel/casscf/gradient.irp.f

215 lines
5.3 KiB
Fortran

use bitmasks
BEGIN_PROVIDER [ integer, nMonoEx ]
BEGIN_DOC
! Number of single excitations
END_DOC
implicit none
nMonoEx=n_core_inact_orb*n_act_orb+n_core_inact_orb*n_virt_orb+n_act_orb*n_virt_orb
END_PROVIDER
BEGIN_PROVIDER [integer, n_c_a_prov]
&BEGIN_PROVIDER [integer, n_c_v_prov]
&BEGIN_PROVIDER [integer, n_a_v_prov]
implicit none
n_c_a_prov = n_core_inact_orb * n_act_orb
n_c_v_prov = n_core_inact_orb * n_virt_orb
n_a_v_prov = n_act_orb * n_virt_orb
END_PROVIDER
BEGIN_PROVIDER [integer, excit, (2,nMonoEx)]
&BEGIN_PROVIDER [character*3, excit_class, (nMonoEx)]
&BEGIN_PROVIDER [integer, list_idx_c_a, (3,n_c_a_prov) ]
&BEGIN_PROVIDER [integer, list_idx_c_v, (3,n_c_v_prov) ]
&BEGIN_PROVIDER [integer, list_idx_a_v, (3,n_a_v_prov) ]
&BEGIN_PROVIDER [integer, mat_idx_c_a, (n_core_inact_orb,n_act_orb)
&BEGIN_PROVIDER [integer, mat_idx_c_v, (n_core_inact_orb,n_virt_orb)
&BEGIN_PROVIDER [integer, mat_idx_a_v, (n_act_orb,n_virt_orb)
BEGIN_DOC
! a list of the orbitals involved in the excitation
END_DOC
implicit none
integer :: i,t,a,ii,tt,aa,indx,indx_tmp
indx=0
indx_tmp = 0
do ii=1,n_core_inact_orb
i=list_core_inact(ii)
do tt=1,n_act_orb
t=list_act(tt)
indx+=1
excit(1,indx)=i
excit(2,indx)=t
excit_class(indx)='c-a'
indx_tmp += 1
list_idx_c_a(1,indx_tmp) = indx
list_idx_c_a(2,indx_tmp) = ii
list_idx_c_a(3,indx_tmp) = tt
mat_idx_c_a(ii,tt) = indx
end do
end do
indx_tmp = 0
do ii=1,n_core_inact_orb
i=list_core_inact(ii)
do aa=1,n_virt_orb
a=list_virt(aa)
indx+=1
excit(1,indx)=i
excit(2,indx)=a
excit_class(indx)='c-v'
indx_tmp += 1
list_idx_c_v(1,indx_tmp) = indx
list_idx_c_v(2,indx_tmp) = ii
list_idx_c_v(3,indx_tmp) = aa
mat_idx_c_v(ii,aa) = indx
end do
end do
indx_tmp = 0
do tt=1,n_act_orb
t=list_act(tt)
do aa=1,n_virt_orb
a=list_virt(aa)
indx+=1
excit(1,indx)=t
excit(2,indx)=a
excit_class(indx)='a-v'
indx_tmp += 1
list_idx_a_v(1,indx_tmp) = indx
list_idx_a_v(2,indx_tmp) = tt
list_idx_a_v(3,indx_tmp) = aa
mat_idx_a_v(tt,aa) = indx
end do
end do
if (bavard) then
write(6,*) ' Filled the table of the Monoexcitations '
do indx=1,nMonoEx
write(6,*) ' ex ',indx,' : ',excit(1,indx),' -> ' &
,excit(2,indx),' ',excit_class(indx)
end do
end if
END_PROVIDER
BEGIN_PROVIDER [real*8, gradvec2, (nMonoEx)]
&BEGIN_PROVIDER [real*8, norm_grad_vec2]
&BEGIN_PROVIDER [real*8, norm_grad_vec2_tab, (3)]
BEGIN_DOC
! calculate the orbital gradient <Psi| H E_pq |Psi> from density
! matrices and integrals; Siegbahn et al, Phys Scr 1980
! eqs 14 a,b,c
END_DOC
implicit none
integer :: i,t,a,indx
real*8 :: gradvec_it,gradvec_ia,gradvec_ta
indx=0
norm_grad_vec2_tab = 0.d0
do i=1,n_core_inact_orb
do t=1,n_act_orb
indx+=1
gradvec2(indx)=gradvec_it(i,t)
norm_grad_vec2_tab(1) += gradvec2(indx)*gradvec2(indx)
end do
end do
do i=1,n_core_inact_orb
do a=1,n_virt_orb
indx+=1
gradvec2(indx)=gradvec_ia(i,a)
norm_grad_vec2_tab(2) += gradvec2(indx)*gradvec2(indx)
end do
end do
do t=1,n_act_orb
do a=1,n_virt_orb
indx+=1
gradvec2(indx)=gradvec_ta(t,a)
norm_grad_vec2_tab(3) += gradvec2(indx)*gradvec2(indx)
end do
end do
norm_grad_vec2=0.d0
do indx=1,nMonoEx
norm_grad_vec2+=gradvec2(indx)*gradvec2(indx)
end do
do i = 1, 3
norm_grad_vec2_tab(i) = dsqrt(norm_grad_vec2_tab(i))
enddo
norm_grad_vec2=sqrt(norm_grad_vec2)
if(bavard)then
write(6,*)
write(6,*) ' Norm of the orbital gradient (via D, P and integrals): ', norm_grad_vec2
write(6,*)
endif
END_PROVIDER
real*8 function gradvec_it(i,t)
BEGIN_DOC
! the orbital gradient core/inactive -> active
! we assume natural orbitals
END_DOC
implicit none
integer :: i,t
integer :: ii,tt,v,vv,x,y
integer :: x3,y3
ii=list_core_inact(i)
tt=list_act(t)
gradvec_it=2.D0*(Fipq(tt,ii)+Fapq(tt,ii))
gradvec_it-=occnum(tt)*Fipq(ii,tt)
do v=1,n_act_orb
vv=list_act(v)
do x=1,n_act_orb
x3=x+n_core_inact_orb
do y=1,n_act_orb
y3=y+n_core_inact_orb
gradvec_it-=2.D0*P0tuvx_no(t,v,x,y)*bielec_PQxx_no(ii,vv,x3,y3)
end do
end do
end do
gradvec_it*=2.D0
end function gradvec_it
real*8 function gradvec_ia(i,a)
BEGIN_DOC
! the orbital gradient core/inactive -> virtual
END_DOC
implicit none
integer :: i,a,ii,aa
ii=list_core_inact(i)
aa=list_virt(a)
gradvec_ia=2.D0*(Fipq(aa,ii)+Fapq(aa,ii))
gradvec_ia*=2.D0
end function gradvec_ia
real*8 function gradvec_ta(t,a)
BEGIN_DOC
! the orbital gradient active -> virtual
! we assume natural orbitals
END_DOC
implicit none
integer :: t,a,tt,aa,v,vv,x,y
tt=list_act(t)
aa=list_virt(a)
gradvec_ta=0.D0
gradvec_ta+=occnum(tt)*Fipq(aa,tt)
do v=1,n_act_orb
do x=1,n_act_orb
do y=1,n_act_orb
gradvec_ta+=2.D0*P0tuvx_no(t,v,x,y)*bielecCI_no(x,y,v,aa)
end do
end do
end do
gradvec_ta*=2.D0
end function gradvec_ta