mirror of
https://gitlab.com/scemama/qp_plugins_scemama.git
synced 2024-11-07 22:53:42 +01:00
198 lines
5.6 KiB
Fortran
198 lines
5.6 KiB
Fortran
subroutine svd_s(A, LDA, U, LDU, D, Vt, LDVt, m, n)
|
|
implicit none
|
|
BEGIN_DOC
|
|
! !!!
|
|
! DGESVD computes the singular value decomposition (SVD) of a real
|
|
! M-by-N matrix A, optionally computing the left and/or right singular
|
|
! vectors. The SVD is written:
|
|
! A = U * SIGMA * transpose(V)
|
|
! where SIGMA is an M-by-N matrix which is zero except for its
|
|
! min(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and
|
|
! V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA
|
|
! are the singular values of A; they are real and non-negative, and
|
|
! are returned in descending order. The first min(m,n) columns of
|
|
! U and V are the left and right singular vectors of A.
|
|
!
|
|
! Note that the routine returns V**T, not V.
|
|
! !!!
|
|
END_DOC
|
|
|
|
integer, intent(in) :: LDA, LDU, LDVt, m, n
|
|
double precision, intent(in) :: A(LDA,n)
|
|
double precision, intent(out) :: U(LDU,m), Vt(LDVt,n), D(min(m,n))
|
|
double precision,allocatable :: work(:), A_tmp(:,:)
|
|
integer :: info, lwork, i, j, k
|
|
|
|
|
|
allocate (A_tmp(LDA,n))
|
|
do k=1,n
|
|
do i=1,m
|
|
!A_tmp(i,k) = A(i,k) + 1d-16
|
|
A_tmp(i,k) = A(i,k)
|
|
enddo
|
|
enddo
|
|
|
|
! Find optimal size for temp arrays
|
|
allocate(work(1))
|
|
lwork = -1
|
|
! 'A': all M columns of U are returned in array U
|
|
! 'A': all N rows of V**T are returned in the array VT
|
|
call dgesvd('A', 'A', m, n, A_tmp, LDA, D, U, LDU, Vt, LDVt, work, lwork, info)
|
|
! /!\ int(WORK(1)) becomes negative when WORK(1) > 2147483648
|
|
if( info.ne.0 ) then
|
|
print *, ' problem in first call DGESVD !!!!'
|
|
print *, ' info = ', info
|
|
print *, ' < 0 : if INFO = -i, the i-th argument had an illegal value.'
|
|
print *, ' > 0 : if DBDSQR did not converge, INFO specifies how many '
|
|
print *, ' superdiagonals of an intermediate bidiagonal form B '
|
|
print *, ' did not converge to zero. See the description of WORK'
|
|
print *, ' above for details. '
|
|
stop
|
|
endif
|
|
lwork = max(int(work(1)), 5*MIN(M,N))
|
|
deallocate(work)
|
|
|
|
allocate(work(lwork))
|
|
|
|
call dgesvd('A', 'A', m, n, A_tmp, LDA, D, U, LDU, Vt, LDVt, work, lwork, info)
|
|
if( info.ne.0 ) then
|
|
print *, ' problem in second call DGESVD !!!!'
|
|
print *, ' info = ', info
|
|
print *, ' < 0 : if INFO = -i, the i-th argument had an illegal value.'
|
|
print *, ' > 0 : if DBDSQR did not converge, INFO specifies how many '
|
|
print *, ' superdiagonals of an intermediate bidiagonal form B '
|
|
print *, ' did not converge to zero. See the description of WORK'
|
|
print *, ' above for details. '
|
|
stop
|
|
endif
|
|
|
|
deallocate(A_tmp,work)
|
|
|
|
!do j=1, m
|
|
! do i=1, LDU
|
|
! if (dabs(U(i,j)) < 1.d-14) U(i,j) = 0.d0
|
|
! enddo
|
|
!enddo
|
|
!do j = 1, n
|
|
! do i = 1, LDVt
|
|
! if (dabs(Vt(i,j)) < 1.d-14) Vt(i,j) = 0.d0
|
|
! enddo
|
|
!enddo
|
|
|
|
end
|
|
|
|
|
|
|
|
subroutine svd_s2(A, LDA, U, LDU, D, Vt, LDVt, m, n)
|
|
implicit none
|
|
|
|
integer, intent(in) :: LDA, LDU, LDVt, m, n
|
|
double precision, intent(in) :: A(LDA,n)
|
|
double precision, intent(out) :: U(LDU,min(m,n)), Vt(LDVt,n), D(min(m,n))
|
|
double precision,allocatable :: work(:), A_tmp(:,:)
|
|
integer :: info, lwork, i, j, k
|
|
|
|
|
|
allocate (A_tmp(LDA,n))
|
|
do k=1,n
|
|
do i=1,m
|
|
A_tmp(i,k) = A(i,k)
|
|
enddo
|
|
enddo
|
|
|
|
! Find optimal size for temp arrays
|
|
allocate(work(1))
|
|
lwork = -1
|
|
! 'A': all M columns of U are returned in array U
|
|
! 'A': all N rows of V**T are returned in the array VT
|
|
call dgesvd('A', 'S', m, n, A_tmp, LDA, D, U, LDU, Vt, LDVt, work, lwork, info)
|
|
! /!\ int(WORK(1)) becomes negative when WORK(1) > 2147483648
|
|
if( info.ne.0 ) then
|
|
print *, ' problem in first call DGESVD !!!!'
|
|
stop
|
|
endif
|
|
lwork = max(int(work(1)), 5*MIN(M,N))
|
|
deallocate(work)
|
|
|
|
allocate(work(lwork))
|
|
|
|
call dgesvd('A', 'S', m, n, A_tmp, LDA, D, U, LDU, Vt, LDVt, work, lwork, info)
|
|
if( info.ne.0 ) then
|
|
print *, ' problem in second call DGESVD !!!!'
|
|
stop
|
|
endif
|
|
|
|
deallocate(A_tmp,work)
|
|
|
|
do j=1, min(m,n)
|
|
do i=1, m
|
|
if (dabs(U(i,j)) < 1.d-14) U(i,j) = 0.d0
|
|
enddo
|
|
enddo
|
|
do j = 1, n
|
|
do i = 1, LDVt
|
|
if (dabs(Vt(i,j)) < 1.d-14) Vt(i,j) = 0.d0
|
|
enddo
|
|
enddo
|
|
|
|
end
|
|
|
|
|
|
|
|
subroutine my_ortho_qr(A,LDA,m,n)
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Orthogonalization using Q.R factorization
|
|
!
|
|
! A : matrix to orthogonalize
|
|
!
|
|
! LDA : leftmost dimension of A
|
|
!
|
|
! m : Number of rows of A
|
|
!
|
|
! n : Number of columns of A
|
|
!
|
|
END_DOC
|
|
integer, intent(in) :: m, n, LDA
|
|
double precision, intent(inout) :: A(LDA,n)
|
|
integer :: LWORK, INFO, nTAU, ii, jj
|
|
double precision, allocatable :: TAU(:), WORK(:)
|
|
double precision :: Adorgqr(LDA,n)
|
|
|
|
allocate (TAU(min(m,n)), WORK(1))
|
|
|
|
LWORK=-1
|
|
call dgeqrf( m, n, A, LDA, TAU, WORK, LWORK, INFO )
|
|
! /!\ int(WORK(1)) becomes negative when WORK(1) > 2147483648
|
|
LWORK=max(n,int(WORK(1)))
|
|
|
|
deallocate(WORK)
|
|
allocate(WORK(LWORK))
|
|
call dgeqrf(m, n, A, LDA, TAU, WORK, LWORK, INFO )
|
|
if(INFO.ne.0 ) then
|
|
print*, 'problem in DGEQRF'
|
|
endif
|
|
|
|
nTAU = size(TAU)
|
|
do jj = 1, n
|
|
do ii = 1, LDA
|
|
Adorgqr(ii,jj) = A(ii,jj)
|
|
enddo
|
|
enddo
|
|
|
|
LWORK=-1
|
|
call dorgqr(m, n, nTAU, Adorgqr, LDA, TAU, WORK, LWORK, INFO)
|
|
! /!\ int(WORK(1)) becomes negative when WORK(1) > 2147483648
|
|
LWORK=max(n,int(WORK(1)))
|
|
|
|
deallocate(WORK)
|
|
allocate(WORK(LWORK))
|
|
call dorgqr(m, n, nTAU, A, LDA, TAU, WORK, LWORK, INFO)
|
|
if(INFO.ne.0 ) then
|
|
print*, 'problem in DORGQR'
|
|
endif
|
|
|
|
|
|
deallocate(WORK,TAU)
|
|
end
|