1
0
mirror of https://gitlab.com/scemama/qp_plugins_scemama.git synced 2024-12-22 20:34:05 +01:00
qp_plugins_scemama/devel/svdwf/buildpsi_diagSVDit_Anthony_v1.irp.f
Abdallah Ammar 2fd2fcac5d svd save
2021-07-28 17:19:18 +02:00

455 lines
14 KiB
Fortran

program buildpsi_diagSVDit_Anthony_v1
implicit none
BEGIN_DOC
! perturbative approach to build psi_postsvd
END_DOC
read_wf = .True.
TOUCH read_wf
PROVIDE N_int
call run()
end
subroutine run
USE OMP_LIB
implicit none
integer(bit_kind) :: det1(N_int,2), det2(N_int,2)
integer :: degree, i_state
double precision :: h12
integer :: i, j, k, l, ii, jj, na, nb
double precision :: norm_psi, inv_sqrt_norm_psi
double precision, allocatable :: Uref(:,:), Dref(:), Vtref(:,:), Aref(:,:), Vref(:,:)
double precision :: err0, err_tmp, e_tmp, E0, overlap, E0_old, tol_energy
double precision :: ctmp, htmp, Ept2
double precision :: E0_postsvd, overlap_postsvd, E_prev
double precision :: norm_coeff_psi, inv_sqrt_norm_coeff_psi
double precision :: overlapU, overlapU_mat, overlapV, overlapV_mat, overlap_psi
double precision, allocatable :: Hdiag(:), Hkl(:,:), H0(:,:), H(:,:,:,:)
double precision, allocatable :: psi_postsvd(:,:), coeff_psi_perturb(:)
integer :: n_TSVD, n_FSVD, n_selected, n_toselect, n_tmp, it_svd, it_svd_max
integer :: n_selected2
integer, allocatable :: numalpha_selected(:), numbeta_selected(:)
integer, allocatable :: numalpha_toselect(:), numbeta_toselect(:)
integer, allocatable :: numalpha_tmp(:), numbeta_tmp(:)
integer(kind=8) :: W_tbeg, W_tend, W_tbeg_it, W_tend_it, W_ir
real(kind=8) :: W_tot_time, W_tot_time_it
real(kind=8) :: CPU_tbeg, CPU_tend, CPU_tbeg_it, CPU_tend_it
real(kind=8) :: CPU_tot_time, CPU_tot_time_it
real(kind=8) :: speedup, speedup_it
integer :: nb_taches
!$OMP PARALLEL
nb_taches = OMP_GET_NUM_THREADS()
!$OMP END PARALLEL
call CPU_TIME(CPU_tbeg)
call SYSTEM_CLOCK(COUNT=W_tbeg, COUNT_RATE=W_ir)
i_state = 1
det1(:,1) = psi_det_alpha_unique(:,1)
det2(:,1) = psi_det_alpha_unique(:,1)
det1(:,2) = psi_det_beta_unique(:,1)
det2(:,2) = psi_det_beta_unique(:,1)
call i_H_j(det1, det2, N_int, h12)
! ---------------------------------------------------------------------------------------
! construct the initial CISD matrix
print *, ' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~'
print *, ' CI matrix:', n_det_alpha_unique,'x',n_det_beta_unique
print *, ' N det :', N_det
print *, ' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~'
norm_psi = 0.d0
do k = 1, N_det
norm_psi = norm_psi + psi_bilinear_matrix_values(k,i_state) &
* psi_bilinear_matrix_values(k,i_state)
enddo
print *, ' initial norm = ', norm_psi
allocate( Aref(n_det_alpha_unique,n_det_beta_unique) )
Aref(:,:) = 0.d0
do k = 1, N_det
i = psi_bilinear_matrix_rows(k)
j = psi_bilinear_matrix_columns(k)
Aref(i,j) = psi_bilinear_matrix_values(k,i_state)
enddo
! ---------------------------------------------------------------------------------------
! ---------------------------------------------------------------------------------------
! perform a Full SVD
allocate( Uref(n_det_alpha_unique,n_det_alpha_unique) )
!allocate( Dref(max(n_det_beta_unique,n_det_alpha_unique)) )
allocate( Dref(min(n_det_beta_unique,n_det_alpha_unique)) )
allocate( Vref(n_det_beta_unique,n_det_beta_unique) )
allocate( Vtref(n_det_beta_unique,n_det_beta_unique) )
call svd_s(Aref, size(Aref,1), Uref, size(Uref,1), Dref, Vtref, size(Vtref,1) &
, n_det_alpha_unique, n_det_beta_unique)
print *, ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~ '
do l = 1, n_det_beta_unique
do i = 1, n_det_beta_unique
Vref(i,l) = Vtref(l,i)
enddo
enddo
deallocate( Vtref )
! Truncated rank
n_TSVD = 20
n_selected = n_TSVD
call write_int(6,n_TSVD, 'Rank of psi')
!________________________________________________________________________________________________________
!
! loop over SVD iterations
!________________________________________________________________________________________________________
tol_energy = 1.d0
it_svd = 0
it_svd_max = 100
E_prev = 0.d0
allocate(H(n_det_alpha_unique,n_det_beta_unique,n_det_alpha_unique,n_det_beta_unique))
allocate(psi_postsvd(n_det_alpha_unique,n_det_beta_unique))
do while( ( it_svd .lt. it_svd_max) .and. ( tol_energy .gt. 1d-8 ) )
call CPU_TIME(CPU_tbeg_it)
call SYSTEM_CLOCK(COUNT=W_tbeg_it, COUNT_RATE=W_ir)
it_svd = it_svd + 1
print*, '+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +'
print*, ' '
print*, ' '
print*, ' '
print*, ' iteration', it_svd
double precision :: norm
norm = 0.d0
do j = 1, n_selected
norm = norm + Dref(j)*Dref(j)
enddo
Dref = Dref / dsqrt(norm)
call const_H_uv(Uref, Vref, H)
E0 = 0.d0
do j = 1, n_selected
do i = 1, n_selected
E0 = E0 + Dref(i) * H(i,i,j,j) * Dref(j)
enddo
enddo
double precision :: E0_av, E0_ap, E0pt2
E0_av = E0 + nuclear_repulsion
print *,' E0 (avant SVD) =', E0_av
print *, ''
double precision, allocatable :: eigval0(:)
double precision, allocatable :: eigvec0(:,:,:)
double precision, allocatable :: H_tmp(:,:,:,:)
allocate( H_tmp(n_selected,n_selected,n_selected,n_selected) )
do l=1,n_selected
do k=1,n_selected
do j=1,n_selected
do i=1,n_selected
H_tmp(i,j,k,l) = H(i,j,k,l)
enddo
enddo
enddo
enddo
allocate( eigval0(n_selected**2),eigvec0(n_selected,n_selected,n_selected**2))
eigvec0 = 0.d0
call lapack_diag(eigval0, eigvec0, H_tmp, n_selected**2, n_selected**2)
E0_postsvd = eigval0(1) + nuclear_repulsion
print*, ' postsvd energy = ', E0_postsvd
deallocate(H_tmp, eigval0)
Dref = 0.d0
call perform_newpostSVD(n_selected, eigvec0(1,1,1), Uref, Vref, Dref)
deallocate(eigvec0)
print *, ' --- Compute H --- '
call const_H_uv(Uref, Vref, H)
E0 = 0.d0
norm = 0.d0
do j = 1, n_det_beta_unique
do i = 1, n_det_beta_unique
E0 = E0 + Dref(i) * H(i,i,j,j) * Dref(j)
enddo
norm = norm + Dref(j)*Dref(j)
enddo
E0_ap = E0 + nuclear_repulsion
print *,' E0 (apres SVD) =', E0_ap
psi_postsvd = 0.d0
do i=1,n_selected
psi_postsvd(i,i) = Dref(i)
enddo
E0 = E0_ap
Ept2 = 0.d0
do j=1,n_selected
do i=n_selected+1,n_det_alpha_unique
ctmp = 0.d0
do l=1,n_selected
do k=1,n_selected
ctmp = ctmp + H(k,l,i,j) * psi_postsvd(k,l)
enddo
enddo
psi_postsvd(i,j) = ctmp / (E0 - (H(i,j,i,j)+nuclear_repulsion) )
Ept2 += ctmp*ctmp / (E0 - (H(i,j,i,j)+nuclear_repulsion) )
enddo
enddo
do j=n_selected+1,n_det_beta_unique
do i=1,n_selected
ctmp = 0.d0
do l=1,n_selected
do k=1,n_selected
ctmp = ctmp + H(k,l,i,j) * psi_postsvd(k,l)
enddo
enddo
psi_postsvd(i,j) = ctmp / (E0 - (H(i,j,i,j)+nuclear_repulsion) )
Ept2 += ctmp*ctmp / (E0 - (H(i,j,i,j)+nuclear_repulsion) )
enddo
enddo
do j=n_selected+1,n_det_beta_unique
do i=n_selected+1,n_det_alpha_unique
ctmp = 0.d0
do l=1,n_selected
do k=1,n_selected
ctmp = ctmp + H(k,l,i,j) * psi_postsvd(k,l)
enddo
enddo
psi_postsvd(i,j) = ctmp / (E0 - (H(i,j,i,j)+nuclear_repulsion) )
Ept2 += ctmp*ctmp / (E0 - (H(i,j,i,j)+nuclear_repulsion) )
enddo
enddo
E0pt2 = E0_ap + ept2
print *, ' perturb energy = ', E0pt2, ept2
tol_energy = dabs(E_prev - E0_ap)
E_prev = E0_ap
call perform_newpostSVD(n_det_beta_unique, psi_postsvd, Uref, Vref, Dref)
write(44,'(i5,4x,4(f22.15,2x))') it_svd, E0_av, E0_postsvd, E0_ap, E0_ap+Ept2
call CPU_TIME(CPU_tend_it)
call SYSTEM_CLOCK(COUNT=W_tend_it, COUNT_RATE=W_ir)
CPU_tot_time_it = CPU_tend_it - CPU_tbeg_it
W_tot_time_it = real(W_tend_it-W_tbeg_it, kind=8) / real(W_ir, kind=8)
speedup_it = CPU_tot_time_it / W_tot_time_it
print '(//, 3X, "elapsed time = ", 1PE10.3, " min.", /, &
& 3X, "CPU time = ", 1PE10.3, " min.", /, &
& 3X, "speed up = ", 1PE10.3,//)', W_tot_time_it/60.d0, CPU_tot_time_it/60.d0, speedup_it
end do
deallocate( Uref, Vref, Dref )
call CPU_TIME(CPU_tend)
call SYSTEM_CLOCK(COUNT=W_tend, COUNT_RATE=W_ir)
CPU_tot_time = CPU_tend - CPU_tbeg
W_tot_time = real(W_tend - W_tbeg, kind=8) / real(W_ir, kind=8)
speedup = CPU_tot_time / W_tot_time
print *,' ___________________________________________________________________'
print '(//,3X,"Execution avec ",i2," threads")',nb_taches
print '(//, 3X, "elapsed time = ", 1PE10.3, " min.", /, &
& 3X, "CPU time = ", 1PE10.3, " min.", /, &
& 3X, "speed up = ", 1PE10.3 ,// )', W_tot_time/60.d0, CPU_tot_time/60.d0, speedup
print *,' ___________________________________________________________________'
end
subroutine perform_newpostSVD(n_selected, psi_postsvd, Uref, Vref, Dref)
USE OMP_LIB
integer, intent(in) :: n_selected
double precision, intent(in) :: psi_postsvd(n_selected,n_selected)
double precision, intent(inout) :: Uref(n_det_alpha_unique,n_det_alpha_unique)
double precision, intent(inout) :: Vref(n_det_beta_unique ,n_det_beta_unique)
double precision, intent(inout) :: Dref(min(n_det_beta_unique,n_det_alpha_unique))
integer :: mm, nn, i, j, ii0, ii, l, jj, na, nb
double precision :: err0, err_norm, err_tmp, norm_tmp
double precision :: overlapU_mat, overlapV_mat, overlapU, overlapV
double precision, allocatable :: S_mat(:,:), SxVt(:,:)
double precision, allocatable :: U_svd(:,:), V_svd(:,:)
double precision, allocatable :: U_newsvd(:,:), V_newsvd(:,:), Vt_newsvd(:,:), D_newsvd(:), A_newsvd(:,:)
mm = n_det_alpha_unique
nn = n_det_beta_unique
allocate( U_svd(mm,n_selected) , V_svd(nn,n_selected) , S_mat(n_selected,n_selected) )
U_svd(1:mm,1:n_selected) = Uref(1:mm,1:n_selected)
V_svd(1:nn,1:n_selected) = Vref(1:nn,1:n_selected)
S_mat(1:n_selected,1:n_selected) = psi_postsvd(1:n_selected,1:n_selected)
! first compute S_mat x transpose(V_svd)
allocate( SxVt(n_selected,nn) )
call dgemm( 'N', 'T', n_selected, nn, n_selected, 1.d0 &
, S_mat , size(S_mat,1) &
, V_svd , size(V_svd,1) &
, 0.d0, SxVt, size(SxVt ,1) )
deallocate(S_mat)
! then compute U_svd x SxVt
allocate( A_newsvd(mm,nn) )
call dgemm( 'N', 'N', mm, nn, n_selected, 1.d0 &
, U_svd , size(U_svd ,1) &
, SxVt , size(SxVt ,1) &
, 0.d0, A_newsvd, size(A_newsvd,1) )
deallocate( SxVt )
! perform new SVD
allocate( U_newsvd(mm,mm), Vt_newsvd(nn,nn), D_newsvd(min(mm,nn)) )
call svd_s( A_newsvd, size(A_newsvd,1), &
U_newsvd, size(U_newsvd,1), &
D_newsvd, &
Vt_newsvd, size(Vt_newsvd,1), &
mm, nn)
deallocate(A_newsvd)
allocate( V_newsvd(nn,nn) )
do l = 1, nn
do j = 1, nn
V_newsvd(j,l) = Vt_newsvd(l,j)
enddo
enddo
deallocate(Vt_newsvd)
!do l = 1, n_selected
! Dref(l) = D_newsvd(l)
! Uref(1:mm,l) = U_newsvd(1:mm,l)
! Vref(1:nn,l) = V_newsvd(1:nn,l)
!enddo
Dref(1:n_selected) = D_newsvd(1:n_selected)
Uref(1:mm,1:mm) = U_newsvd(1:mm,1:mm)
Vref(1:nn,1:nn) = V_newsvd(1:nn,1:nn)
deallocate(U_newsvd)
deallocate(V_newsvd)
deallocate(D_newsvd)
end subroutine perform_newpostSVD
subroutine const_H_uv(Uref, Vref, H)
USE OMP_LIB
implicit none
double precision, intent(in) :: Uref(n_det_alpha_unique,n_det_beta_unique)
double precision, intent(in) :: Vref(n_det_beta_unique ,n_det_beta_unique)
double precision, intent(out) :: H(n_det_alpha_unique,n_det_beta_unique, n_det_alpha_unique,n_det_beta_unique)
integer(bit_kind) :: det1(N_int,2), det2(N_int,2)
integer :: i, j, k, l, degree
integer :: ii0, jj0, ii, jj, n, m, np, mp
integer :: nn0, mm0, na, nb, mm, ind_gs
integer :: p,q,r,s
double precision :: h12, x
double precision, allocatable :: H0(:,:,:,:)
double precision, allocatable :: H1(:,:,:,:)
na = n_det_alpha_unique
nb = n_det_beta_unique
allocate( H0(na,nb,na,nb) )
allocate( H1(nb,na,nb,na) )
H0 = 0.d0
call wall_time(t0)
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(p,q,r,s,i,j,k,l,det1,det2,degree,h12) &
!$OMP SHARED(na,nb,psi_det_alpha_unique,psi_det_beta_unique, &
!$OMP N_int,Uref,Vref,H0,H1,H)
!$OMP DO
do l = 1, nb
det2(:,2) = psi_det_beta_unique(:,l)
do j = 1, nb
det1(:,2) = psi_det_beta_unique(:,j)
call get_excitation_degree_spin(det1(1,2),det2(1,2),degree,N_int)
if (degree > 2) cycle
do k = 1, na
det2(:,1) = psi_det_alpha_unique(:,k)
do i = 1, na
det1(:,1) = psi_det_alpha_unique(:,i)
call get_excitation_degree(det1,det2,degree,N_int)
if ( degree > 2) cycle
call i_H_j(det1, det2, N_int, h12)
H0(i,j,k,l) = h12
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(t1)
! (i,j,k,l) -> (j,k,l,p)
call DGEMM('T','N', nb * na * nb, na, na, &
1.d0, H0, size(H0,1), Uref, size(Uref,1), 0.d0, H1, size(H1,1)*size(H1,2)*size(H1,3))
! (j,k,l,p) -> (k,l,p,q)
call DGEMM('T','N', na * nb * na, nb, nb, &
1.d0, H1, size(H1,1), Vref, size(Vref,1), 0.d0, H0, size(H0,1)*size(H0,2)*size(H0,3))
! (k,l,p,q) -> (l,p,q,r)
call DGEMM('T','N', nb * na * nb, na, na, &
1.d0, H0, size(H0,1), Uref, size(Uref,1), 0.d0, H1, size(H1,1)*size(H1,2)*size(H1,3))
! (l,p,q,r) -> (p,q,r,s)
call DGEMM('T','N', na * nb * na, nb, nb, &
1.d0, H1, size(H1,1), Vref, size(Vref,1), 0.d0, H, size(H,1)*size(H,2)*size(H,3))
call wall_time(t2)
print *, t1-t0, t2-t1
double precision :: t0, t1, t2
deallocate(H1,H0)
end