1
0
mirror of https://gitlab.com/scemama/qp_plugins_scemama.git synced 2024-12-22 20:34:05 +01:00
qp_plugins_scemama/devel/svdwf/R3SVD_LiYu.py
Abdallah AMMAR 4724e9f6f0 random svd
2021-04-08 16:31:31 +02:00

59 lines
1.9 KiB
Python

# !!!
import numpy as np
from QR import QR_fact
# !!!
def R3SVD_LiYu(A, t, delta_t, npow, err_thr, maxit):
# !!!
# build initial QB decomposition
# !!!
n = A.shape[1]
G = np.random.randn(n, t) # n x t Gaussian random matrix
normA = np.linalg.norm(A, ord='fro')**2
i_it = 0
rank = 0
Y = np.dot(A,G)
# The power scheme
for j in range(npow):
Q = QR_fact(Y)
Q = QR_fact( np.dot(A.T,Q) )
Y = np.dot(A,Q)
# orthogonalization process
Q_old = QR_fact(Y)
B = np.dot(Q_old.T,A)
normB = np.linalg.norm(B, ord='fro')**2
# error percentage
errpr = abs( normA - normB ) / normA
rank += t
i_it += 1
print("iteration = {}, rank = {}, error = {}".format(i_it, rank, errpr))
# !!!
# incrementally build up QB decomposition
# !!!
while ( (errpr>err_thr) and (i_it<maxit) and (rank<=min(A.shape)-delta_t) ): #
G = np.random.randn(n, delta_t) # n x delta_t Gaussian random matrix
Y = np.dot(A,G)
Y = Y - np.dot(Q_old, np.dot(Q_old.T,Y) ) # orthogonalization with Q
# power scheme
for j in range(npow):
Q = QR_fact(Y)
Q = QR_fact( np.dot(A.T,Q) )
Y = np.dot(A,Q)
Y = Y - np.dot(Q_old, np.dot(Q_old.T,Y) ) # orthogonalization with Q
Q_new = QR_fact(Y)
B_new = np.dot(Q_new.T,A)
# build up approximate basis
Q_old = np.append(Q_new, Q_old, axis=1)
B = np.append(B_new, B, axis=0)
rank += delta_t
i_it += 1
normB += np.linalg.norm(B_new, ord='fro')**2
errpr = abs( normA - normB ) / normA
print("iteration = {}, rank = {}, error = {}".format(i_it, rank, errpr))
# !!!
print("iteration = {}, rank = {}, error = {}".format(i_it, rank, errpr))
UL, SL, VLT = np.linalg.svd(B, full_matrices=0)
UL = np.dot(Q_old,UL)
# !!!
return UL, SL, VLT
# !!!