mirror of
https://gitlab.com/scemama/qp_plugins_scemama.git
synced 2025-01-10 13:08:15 +01:00
215 lines
5.3 KiB
Fortran
215 lines
5.3 KiB
Fortran
use bitmasks
|
|
|
|
BEGIN_PROVIDER [ integer, nMonoEx ]
|
|
BEGIN_DOC
|
|
! Number of single excitations
|
|
END_DOC
|
|
implicit none
|
|
nMonoEx=n_core_inact_orb*n_act_orb+n_core_inact_orb*n_virt_orb+n_act_orb*n_virt_orb
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [integer, n_c_a_prov]
|
|
&BEGIN_PROVIDER [integer, n_c_v_prov]
|
|
&BEGIN_PROVIDER [integer, n_a_v_prov]
|
|
implicit none
|
|
n_c_a_prov = n_core_inact_orb * n_act_orb
|
|
n_c_v_prov = n_core_inact_orb * n_virt_orb
|
|
n_a_v_prov = n_act_orb * n_virt_orb
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [integer, excit, (2,nMonoEx)]
|
|
&BEGIN_PROVIDER [character*3, excit_class, (nMonoEx)]
|
|
&BEGIN_PROVIDER [integer, list_idx_c_a, (3,n_c_a_prov) ]
|
|
&BEGIN_PROVIDER [integer, list_idx_c_v, (3,n_c_v_prov) ]
|
|
&BEGIN_PROVIDER [integer, list_idx_a_v, (3,n_a_v_prov) ]
|
|
&BEGIN_PROVIDER [integer, mat_idx_c_a, (n_core_inact_orb,n_act_orb)
|
|
&BEGIN_PROVIDER [integer, mat_idx_c_v, (n_core_inact_orb,n_virt_orb)
|
|
&BEGIN_PROVIDER [integer, mat_idx_a_v, (n_act_orb,n_virt_orb)
|
|
BEGIN_DOC
|
|
! a list of the orbitals involved in the excitation
|
|
END_DOC
|
|
|
|
implicit none
|
|
integer :: i,t,a,ii,tt,aa,indx,indx_tmp
|
|
indx=0
|
|
indx_tmp = 0
|
|
do ii=1,n_core_inact_orb
|
|
i=list_core_inact(ii)
|
|
do tt=1,n_act_orb
|
|
t=list_act(tt)
|
|
indx+=1
|
|
excit(1,indx)=i
|
|
excit(2,indx)=t
|
|
excit_class(indx)='c-a'
|
|
indx_tmp += 1
|
|
list_idx_c_a(1,indx_tmp) = indx
|
|
list_idx_c_a(2,indx_tmp) = ii
|
|
list_idx_c_a(3,indx_tmp) = tt
|
|
mat_idx_c_a(ii,tt) = indx
|
|
end do
|
|
end do
|
|
|
|
indx_tmp = 0
|
|
do ii=1,n_core_inact_orb
|
|
i=list_core_inact(ii)
|
|
do aa=1,n_virt_orb
|
|
a=list_virt(aa)
|
|
indx+=1
|
|
excit(1,indx)=i
|
|
excit(2,indx)=a
|
|
excit_class(indx)='c-v'
|
|
indx_tmp += 1
|
|
list_idx_c_v(1,indx_tmp) = indx
|
|
list_idx_c_v(2,indx_tmp) = ii
|
|
list_idx_c_v(3,indx_tmp) = aa
|
|
mat_idx_c_v(ii,aa) = indx
|
|
end do
|
|
end do
|
|
|
|
indx_tmp = 0
|
|
do tt=1,n_act_orb
|
|
t=list_act(tt)
|
|
do aa=1,n_virt_orb
|
|
a=list_virt(aa)
|
|
indx+=1
|
|
excit(1,indx)=t
|
|
excit(2,indx)=a
|
|
excit_class(indx)='a-v'
|
|
indx_tmp += 1
|
|
list_idx_a_v(1,indx_tmp) = indx
|
|
list_idx_a_v(2,indx_tmp) = tt
|
|
list_idx_a_v(3,indx_tmp) = aa
|
|
mat_idx_a_v(tt,aa) = indx
|
|
end do
|
|
end do
|
|
|
|
if (bavard) then
|
|
write(6,*) ' Filled the table of the Monoexcitations '
|
|
do indx=1,nMonoEx
|
|
write(6,*) ' ex ',indx,' : ',excit(1,indx),' -> ' &
|
|
,excit(2,indx),' ',excit_class(indx)
|
|
end do
|
|
end if
|
|
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [real*8, gradvec2, (nMonoEx)]
|
|
&BEGIN_PROVIDER [real*8, norm_grad_vec2]
|
|
&BEGIN_PROVIDER [real*8, norm_grad_vec2_tab, (3)]
|
|
BEGIN_DOC
|
|
! calculate the orbital gradient <Psi| H E_pq |Psi> from density
|
|
! matrices and integrals; Siegbahn et al, Phys Scr 1980
|
|
! eqs 14 a,b,c
|
|
END_DOC
|
|
implicit none
|
|
integer :: i,t,a,indx
|
|
real*8 :: gradvec_it,gradvec_ia,gradvec_ta
|
|
|
|
indx=0
|
|
norm_grad_vec2_tab = 0.d0
|
|
do i=1,n_core_inact_orb
|
|
do t=1,n_act_orb
|
|
indx+=1
|
|
gradvec2(indx)=gradvec_it(i,t)
|
|
norm_grad_vec2_tab(1) += gradvec2(indx)*gradvec2(indx)
|
|
end do
|
|
end do
|
|
|
|
do i=1,n_core_inact_orb
|
|
do a=1,n_virt_orb
|
|
indx+=1
|
|
gradvec2(indx)=gradvec_ia(i,a)
|
|
norm_grad_vec2_tab(2) += gradvec2(indx)*gradvec2(indx)
|
|
end do
|
|
end do
|
|
|
|
do t=1,n_act_orb
|
|
do a=1,n_virt_orb
|
|
indx+=1
|
|
gradvec2(indx)=gradvec_ta(t,a)
|
|
norm_grad_vec2_tab(3) += gradvec2(indx)*gradvec2(indx)
|
|
end do
|
|
end do
|
|
|
|
norm_grad_vec2=0.d0
|
|
do indx=1,nMonoEx
|
|
norm_grad_vec2+=gradvec2(indx)*gradvec2(indx)
|
|
end do
|
|
do i = 1, 3
|
|
norm_grad_vec2_tab(i) = dsqrt(norm_grad_vec2_tab(i))
|
|
enddo
|
|
norm_grad_vec2=sqrt(norm_grad_vec2)
|
|
if(bavard)then
|
|
write(6,*)
|
|
write(6,*) ' Norm of the orbital gradient (via D, P and integrals): ', norm_grad_vec2
|
|
write(6,*)
|
|
endif
|
|
|
|
END_PROVIDER
|
|
|
|
real*8 function gradvec_it(i,t)
|
|
BEGIN_DOC
|
|
! the orbital gradient core/inactive -> active
|
|
! we assume natural orbitals
|
|
END_DOC
|
|
implicit none
|
|
integer :: i,t
|
|
|
|
integer :: ii,tt,v,vv,x,y
|
|
integer :: x3,y3
|
|
|
|
ii=list_core_inact(i)
|
|
tt=list_act(t)
|
|
gradvec_it=2.D0*(Fipq(tt,ii)+Fapq(tt,ii))
|
|
gradvec_it-=occnum(tt)*Fipq(ii,tt)
|
|
do v=1,n_act_orb
|
|
vv=list_act(v)
|
|
do x=1,n_act_orb
|
|
x3=x+n_core_inact_orb
|
|
do y=1,n_act_orb
|
|
y3=y+n_core_inact_orb
|
|
gradvec_it-=2.D0*P0tuvx_no(t,v,x,y)*bielec_PQxx_no(ii,vv,x3,y3)
|
|
end do
|
|
end do
|
|
end do
|
|
gradvec_it*=2.D0
|
|
end function gradvec_it
|
|
|
|
real*8 function gradvec_ia(i,a)
|
|
BEGIN_DOC
|
|
! the orbital gradient core/inactive -> virtual
|
|
END_DOC
|
|
implicit none
|
|
integer :: i,a,ii,aa
|
|
|
|
ii=list_core_inact(i)
|
|
aa=list_virt(a)
|
|
gradvec_ia=2.D0*(Fipq(aa,ii)+Fapq(aa,ii))
|
|
gradvec_ia*=2.D0
|
|
|
|
end function gradvec_ia
|
|
|
|
real*8 function gradvec_ta(t,a)
|
|
BEGIN_DOC
|
|
! the orbital gradient active -> virtual
|
|
! we assume natural orbitals
|
|
END_DOC
|
|
implicit none
|
|
integer :: t,a,tt,aa,v,vv,x,y
|
|
|
|
tt=list_act(t)
|
|
aa=list_virt(a)
|
|
gradvec_ta=0.D0
|
|
gradvec_ta+=occnum(tt)*Fipq(aa,tt)
|
|
do v=1,n_act_orb
|
|
do x=1,n_act_orb
|
|
do y=1,n_act_orb
|
|
gradvec_ta+=2.D0*P0tuvx_no(t,v,x,y)*bielecCI_no(x,y,v,aa)
|
|
end do
|
|
end do
|
|
end do
|
|
gradvec_ta*=2.D0
|
|
|
|
end function gradvec_ta
|
|
|