mirror of
https://gitlab.com/scemama/qp_plugins_scemama.git
synced 2025-01-06 19:33:03 +01:00
208 lines
7.0 KiB
Fortran
208 lines
7.0 KiB
Fortran
BEGIN_PROVIDER [double precision, super_ci_dm, (mo_num,mo_num)]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! density matrix of the super CI matrix, in the basis of NATURAL ORBITALS OF THE CASCI WF
|
|
!
|
|
! This is obtained from annex B of Roos et. al. Chemical Physics 48 (1980) 157-173
|
|
!
|
|
! WARNING ::: in the equation B3.d there is a TYPO with a forgotten MINUS SIGN (see variable mat_tmp_dm_super_ci )
|
|
END_DOC
|
|
super_ci_dm = 0.d0
|
|
integer :: i,j,iorb,jorb
|
|
integer :: a,aorb,b,borb
|
|
integer :: t,torb,v,vorb,u,uorb,x,xorb
|
|
double precision :: c0,ci
|
|
c0 = SXeigenvec(1,1)
|
|
! equation B3.a of the annex B of Roos et. al. Chemical Physics 48 (1980) 157-173
|
|
! loop over the core/inact
|
|
do i = 1, n_core_inact_orb
|
|
iorb = list_core_inact(i)
|
|
super_ci_dm(iorb,iorb) = 2.d0 ! first term of B3.a
|
|
! loop over the core/inact
|
|
do j = 1, n_core_inact_orb
|
|
jorb = list_core_inact(j)
|
|
! loop over the virtual
|
|
do a = 1, n_virt_orb
|
|
aorb = list_virt(a)
|
|
super_ci_dm(jorb,iorb) += -2.d0 * lowest_super_ci_coef_mo(aorb,iorb) * lowest_super_ci_coef_mo(aorb,jorb) ! second term in B3.a
|
|
enddo
|
|
do t = 1, n_act_orb
|
|
torb = list_act(t)
|
|
! thrid term of the B3.a
|
|
super_ci_dm(jorb,iorb) += - lowest_super_ci_coef_mo(iorb,torb) * lowest_super_ci_coef_mo(jorb,torb) * (2.d0 - occ_act(t))
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
! equation B3.b of the annex B of Roos et. al. Chemical Physics 48 (1980) 157-173
|
|
do i = 1, n_core_inact_orb
|
|
iorb = list_core_inact(i)
|
|
do t = 1, n_act_orb
|
|
torb = list_act(t)
|
|
super_ci_dm(iorb,torb) = c0 * lowest_super_ci_coef_mo(torb,iorb) * (2.d0 - occ_act(t))
|
|
super_ci_dm(torb,iorb) = c0 * lowest_super_ci_coef_mo(torb,iorb) * (2.d0 - occ_act(t))
|
|
do a = 1, n_virt_orb
|
|
aorb = list_virt(a)
|
|
super_ci_dm(iorb,torb) += - lowest_super_ci_coef_mo(aorb,iorb) * lowest_super_ci_coef_mo(aorb,torb) * occ_act(t)
|
|
super_ci_dm(torb,iorb) += - lowest_super_ci_coef_mo(aorb,iorb) * lowest_super_ci_coef_mo(aorb,torb) * occ_act(t)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
! equation B3.c of the annex B of Roos et. al. Chemical Physics 48 (1980) 157-173
|
|
do i = 1, n_core_inact_orb
|
|
iorb = list_core_inact(i)
|
|
do a = 1, n_virt_orb
|
|
aorb = list_virt(a)
|
|
super_ci_dm(aorb,iorb) = 2.d0 * c0 * lowest_super_ci_coef_mo(aorb,iorb)
|
|
super_ci_dm(iorb,aorb) = 2.d0 * c0 * lowest_super_ci_coef_mo(aorb,iorb)
|
|
enddo
|
|
enddo
|
|
|
|
! equation B3.d of the annex B of Roos et. al. Chemical Physics 48 (1980) 157-173
|
|
do t = 1, n_act_orb
|
|
torb = list_act(t)
|
|
super_ci_dm(torb,torb) = occ_act(t) ! first term of equation B3.d
|
|
do x = 1, n_act_orb
|
|
xorb = list_act(x)
|
|
super_ci_dm(torb,torb) += - occ_act(x) * occ_act(t)* mat_tmp_dm_super_ci(x,x) ! second term involving the ONE-rdm
|
|
enddo
|
|
do u = 1, n_act_orb
|
|
uorb = list_act(u)
|
|
|
|
! second term of equation B3.d
|
|
do x = 1, n_act_orb
|
|
xorb = list_act(x)
|
|
do v = 1, n_act_orb
|
|
vorb = list_act(v)
|
|
super_ci_dm(torb,uorb) += 2.d0 * P0tuvx_no(v,x,t,u) * mat_tmp_dm_super_ci(v,x) ! second term involving the TWO-rdm
|
|
enddo
|
|
enddo
|
|
|
|
! third term of equation B3.d
|
|
do i = 1, n_core_inact_orb
|
|
iorb = list_core_inact(i)
|
|
super_ci_dm(torb,uorb) += lowest_super_ci_coef_mo(iorb,torb) * lowest_super_ci_coef_mo(iorb,uorb) * (2.d0 - occ_act(t) - occ_act(u))
|
|
enddo
|
|
|
|
enddo
|
|
enddo
|
|
|
|
! equation B3.e of the annex B of Roos et. al. Chemical Physics 48 (1980) 157-173
|
|
do t = 1, n_act_orb
|
|
torb = list_act(t)
|
|
do a = 1, n_virt_orb
|
|
aorb = list_virt(a)
|
|
super_ci_dm(aorb,torb) += c0 * lowest_super_ci_coef_mo(aorb,torb) * occ_act(t)
|
|
super_ci_dm(torb,aorb) += c0 * lowest_super_ci_coef_mo(aorb,torb) * occ_act(t)
|
|
do i = 1, n_core_inact_orb
|
|
iorb = list_core_inact(i)
|
|
super_ci_dm(aorb,torb) += lowest_super_ci_coef_mo(iorb,aorb) * lowest_super_ci_coef_mo(iorb,torb) * (2.d0 - occ_act(t))
|
|
super_ci_dm(torb,aorb) += lowest_super_ci_coef_mo(iorb,aorb) * lowest_super_ci_coef_mo(iorb,torb) * (2.d0 - occ_act(t))
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
! equation B3.f of the annex B of Roos et. al. Chemical Physics 48 (1980) 157-173
|
|
do a = 1, n_virt_orb
|
|
aorb = list_virt(a)
|
|
do b = 1, n_virt_orb
|
|
borb= list_virt(b)
|
|
|
|
! First term of equation B3.f
|
|
do i = 1, n_core_inact_orb
|
|
iorb = list_core_inact(i)
|
|
super_ci_dm(borb,aorb) += 2.d0 * lowest_super_ci_coef_mo(iorb,aorb) * lowest_super_ci_coef_mo(iorb,borb)
|
|
enddo
|
|
|
|
! Second term of equation B3.f
|
|
do t = 1, n_act_orb
|
|
torb = list_act(t)
|
|
super_ci_dm(borb,aorb) += lowest_super_ci_coef_mo(torb,aorb) * lowest_super_ci_coef_mo(torb,borb) * occ_act(t)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [double precision, superci_natorb, (ao_num,mo_num)
|
|
&BEGIN_PROVIDER [double precision, superci_nat_occ, (mo_num)
|
|
implicit none
|
|
call general_mo_coef_new_as_svd_vectors_of_mo_matrix_eig(super_ci_dm,mo_num,mo_num,mo_num,NatOrbsFCI,superci_nat_occ,superci_natorb)
|
|
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [double precision, mat_tmp_dm_super_ci, (n_act_orb,n_act_orb)]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! computation of the term in [ ] in the equation B3.d of Roos et. al. Chemical Physics 48 (1980) 157-173
|
|
!
|
|
! !!!!! WARNING !!!!!! there is a TYPO: a MINUS SIGN SHOULD APPEAR in that term
|
|
END_DOC
|
|
integer :: a,aorb,i,iorb
|
|
integer :: x,xorb,v,vorb
|
|
mat_tmp_dm_super_ci = 0.d0
|
|
do v = 1, n_act_orb
|
|
vorb = list_act(v)
|
|
do x = 1, n_act_orb
|
|
xorb = list_act(x)
|
|
do a = 1, n_virt_orb
|
|
aorb = list_virt(a)
|
|
mat_tmp_dm_super_ci(x,v) += lowest_super_ci_coef_mo(aorb,vorb) * lowest_super_ci_coef_mo(aorb,xorb)
|
|
enddo
|
|
do i = 1, n_core_inact_orb
|
|
iorb = list_core_inact(i)
|
|
! MARK THE MINUS SIGN HERE !!!!!!!!!!! BECAUSE OF TYPO IN THE ORIGINAL PAPER
|
|
mat_tmp_dm_super_ci(x,v) -= lowest_super_ci_coef_mo(iorb,vorb) * lowest_super_ci_coef_mo(iorb,xorb)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [double precision, lowest_super_ci_coef_mo, (mo_num,mo_num)]
|
|
implicit none
|
|
integer :: i,j,iorb,jorb
|
|
integer :: a, aorb,t, torb
|
|
double precision :: sqrt2
|
|
|
|
sqrt2 = 1.d0/dsqrt(2.d0)
|
|
do i = 1, nMonoEx
|
|
iorb = excit(1,i)
|
|
jorb = excit(2,i)
|
|
lowest_super_ci_coef_mo(iorb,jorb) = SXeigenvec(i+1,1)
|
|
lowest_super_ci_coef_mo(jorb,iorb) = SXeigenvec(i+1,1)
|
|
enddo
|
|
|
|
! a_{it} of the equation B.2 of Roos et. al. Chemical Physics 48 (1980) 157-173
|
|
do i = 1, n_core_inact_orb
|
|
iorb = list_core_inact(i)
|
|
do t = 1, n_act_orb
|
|
torb = list_act(t)
|
|
lowest_super_ci_coef_mo(torb,iorb) *= (2.d0 - occ_act(t))**(-0.5d0)
|
|
lowest_super_ci_coef_mo(iorb,torb) *= (2.d0 - occ_act(t))**(-0.5d0)
|
|
enddo
|
|
enddo
|
|
|
|
! a_{ia} of the equation B.2 of Roos et. al. Chemical Physics 48 (1980) 157-173
|
|
do i = 1, n_core_inact_orb
|
|
iorb = list_core_inact(i)
|
|
do a = 1, n_virt_orb
|
|
aorb = list_virt(a)
|
|
lowest_super_ci_coef_mo(aorb,iorb) *= sqrt2
|
|
lowest_super_ci_coef_mo(iorb,aorb) *= sqrt2
|
|
enddo
|
|
enddo
|
|
|
|
! a_{ta} of the equation B.2 of Roos et. al. Chemical Physics 48 (1980) 157-173
|
|
do a = 1, n_virt_orb
|
|
aorb = list_virt(a)
|
|
do t = 1, n_act_orb
|
|
torb = list_act(t)
|
|
lowest_super_ci_coef_mo(torb,aorb) *= occ_act(t)**(-0.5d0)
|
|
lowest_super_ci_coef_mo(aorb,torb) *= occ_act(t)**(-0.5d0)
|
|
enddo
|
|
enddo
|
|
|
|
END_PROVIDER
|
|
|