use bitmasks BEGIN_PROVIDER [ integer, nMonoEx ] BEGIN_DOC ! Number of single excitations END_DOC implicit none nMonoEx=n_core_inact_orb*n_act_orb+n_core_inact_orb*n_virt_orb+n_act_orb*n_virt_orb END_PROVIDER BEGIN_PROVIDER [integer, n_c_a_prov] &BEGIN_PROVIDER [integer, n_c_v_prov] &BEGIN_PROVIDER [integer, n_a_v_prov] implicit none n_c_a_prov = n_core_inact_orb * n_act_orb n_c_v_prov = n_core_inact_orb * n_virt_orb n_a_v_prov = n_act_orb * n_virt_orb END_PROVIDER BEGIN_PROVIDER [integer, excit, (2,nMonoEx)] &BEGIN_PROVIDER [character*3, excit_class, (nMonoEx)] &BEGIN_PROVIDER [integer, list_idx_c_a, (3,n_c_a_prov) ] &BEGIN_PROVIDER [integer, list_idx_c_v, (3,n_c_v_prov) ] &BEGIN_PROVIDER [integer, list_idx_a_v, (3,n_a_v_prov) ] &BEGIN_PROVIDER [integer, mat_idx_c_a, (n_core_inact_orb,n_act_orb) &BEGIN_PROVIDER [integer, mat_idx_c_v, (n_core_inact_orb,n_virt_orb) &BEGIN_PROVIDER [integer, mat_idx_a_v, (n_act_orb,n_virt_orb) BEGIN_DOC ! a list of the orbitals involved in the excitation END_DOC implicit none integer :: i,t,a,ii,tt,aa,indx,indx_tmp indx=0 indx_tmp = 0 do ii=1,n_core_inact_orb i=list_core_inact(ii) do tt=1,n_act_orb t=list_act(tt) indx+=1 excit(1,indx)=i excit(2,indx)=t excit_class(indx)='c-a' indx_tmp += 1 list_idx_c_a(1,indx_tmp) = indx list_idx_c_a(2,indx_tmp) = ii list_idx_c_a(3,indx_tmp) = tt mat_idx_c_a(ii,tt) = indx end do end do indx_tmp = 0 do ii=1,n_core_inact_orb i=list_core_inact(ii) do aa=1,n_virt_orb a=list_virt(aa) indx+=1 excit(1,indx)=i excit(2,indx)=a excit_class(indx)='c-v' indx_tmp += 1 list_idx_c_v(1,indx_tmp) = indx list_idx_c_v(2,indx_tmp) = ii list_idx_c_v(3,indx_tmp) = aa mat_idx_c_v(ii,aa) = indx end do end do indx_tmp = 0 do tt=1,n_act_orb t=list_act(tt) do aa=1,n_virt_orb a=list_virt(aa) indx+=1 excit(1,indx)=t excit(2,indx)=a excit_class(indx)='a-v' indx_tmp += 1 list_idx_a_v(1,indx_tmp) = indx list_idx_a_v(2,indx_tmp) = tt list_idx_a_v(3,indx_tmp) = aa mat_idx_a_v(tt,aa) = indx end do end do if (bavard) then write(6,*) ' Filled the table of the Monoexcitations ' do indx=1,nMonoEx write(6,*) ' ex ',indx,' : ',excit(1,indx),' -> ' & ,excit(2,indx),' ',excit_class(indx) end do end if END_PROVIDER BEGIN_PROVIDER [real*8, gradvec2, (nMonoEx)] &BEGIN_PROVIDER [real*8, norm_grad_vec2] &BEGIN_PROVIDER [real*8, norm_grad_vec2_tab, (3)] BEGIN_DOC ! calculate the orbital gradient <Psi| H E_pq |Psi> from density ! matrices and integrals; Siegbahn et al, Phys Scr 1980 ! eqs 14 a,b,c END_DOC implicit none integer :: i,t,a,indx real*8 :: gradvec_it,gradvec_ia,gradvec_ta indx=0 norm_grad_vec2_tab = 0.d0 do i=1,n_core_inact_orb do t=1,n_act_orb indx+=1 gradvec2(indx)=gradvec_it(i,t) norm_grad_vec2_tab(1) += gradvec2(indx)*gradvec2(indx) end do end do do i=1,n_core_inact_orb do a=1,n_virt_orb indx+=1 gradvec2(indx)=gradvec_ia(i,a) norm_grad_vec2_tab(2) += gradvec2(indx)*gradvec2(indx) end do end do do t=1,n_act_orb do a=1,n_virt_orb indx+=1 gradvec2(indx)=gradvec_ta(t,a) norm_grad_vec2_tab(3) += gradvec2(indx)*gradvec2(indx) end do end do norm_grad_vec2=0.d0 do indx=1,nMonoEx norm_grad_vec2+=gradvec2(indx)*gradvec2(indx) end do do i = 1, 3 norm_grad_vec2_tab(i) = dsqrt(norm_grad_vec2_tab(i)) enddo norm_grad_vec2=sqrt(norm_grad_vec2) if(bavard)then write(6,*) write(6,*) ' Norm of the orbital gradient (via D, P and integrals): ', norm_grad_vec2 write(6,*) endif END_PROVIDER real*8 function gradvec_it(i,t) BEGIN_DOC ! the orbital gradient core/inactive -> active ! we assume natural orbitals END_DOC implicit none integer :: i,t integer :: ii,tt,v,vv,x,y integer :: x3,y3 ii=list_core_inact(i) tt=list_act(t) gradvec_it=2.D0*(Fipq(tt,ii)+Fapq(tt,ii)) gradvec_it-=occnum(tt)*Fipq(ii,tt) do v=1,n_act_orb vv=list_act(v) do x=1,n_act_orb x3=x+n_core_inact_orb do y=1,n_act_orb y3=y+n_core_inact_orb gradvec_it-=2.D0*P0tuvx_no(t,v,x,y)*bielec_PQxx_no(ii,vv,x3,y3) end do end do end do gradvec_it*=2.D0 end function gradvec_it real*8 function gradvec_ia(i,a) BEGIN_DOC ! the orbital gradient core/inactive -> virtual END_DOC implicit none integer :: i,a,ii,aa ii=list_core_inact(i) aa=list_virt(a) gradvec_ia=2.D0*(Fipq(aa,ii)+Fapq(aa,ii)) gradvec_ia*=2.D0 end function gradvec_ia real*8 function gradvec_ta(t,a) BEGIN_DOC ! the orbital gradient active -> virtual ! we assume natural orbitals END_DOC implicit none integer :: t,a,tt,aa,v,vv,x,y tt=list_act(t) aa=list_virt(a) gradvec_ta=0.D0 gradvec_ta+=occnum(tt)*Fipq(aa,tt) do v=1,n_act_orb do x=1,n_act_orb do y=1,n_act_orb gradvec_ta+=2.D0*P0tuvx_no(t,v,x,y)*bielecCI_no(x,y,v,aa) end do end do end do gradvec_ta*=2.D0 end function gradvec_ta