! --- BEGIN_PROVIDER [ double precision, dressing_column_h, (N_det,N_states) ] &BEGIN_PROVIDER [ double precision, dressing_column_s, (N_det,N_states) ] BEGIN_DOC ! \Delta_{state-specific}. \Psi ! Diagonal element is divided by 2 because Delta = D + D^t END_DOC implicit none integer :: i,ii,k,j, l double precision :: f, tmp double precision, allocatable :: delta(:) allocate(delta(N_det)) delta(1:N_det) = dmc_delta_h(1:N_det,1) call dset_order(delta,psi_bilinear_matrix_order_reverse,N_det) dressing_column_h(:,:) = 0.d0 dressing_column_s(:,:) = 0.d0 l = dressed_column_idx(1) do j = 1, n_det if(j == l) cycle dressing_column_h(j,1) = delta(j) dressing_column_h(l,1) -= psi_coef(j,1) * delta(j) / psi_coef(l,1) enddo dressing_column_h(l,1) += delta(l) dressing_column_h(l,1) *= 0.5d0 deallocate(delta) END_PROVIDER ! --- BEGIN_PROVIDER [ double precision, dressing_delta, (N_det, N_states) ] BEGIN_DOC ! ! dressing_delta is: ! [\delta_K]_I = < I | \tilde{H} - H | \Phi_K > ! END_DOC implicit none integer :: i, j, k double precision, allocatable :: delta(:,:) dressing_delta(1:N_det,1:N_states) = 0.d0 allocate(delta(N_det,N_states)) do k = 1, N_states do j = 1, N_det delta(j,k) = dmc_delta_h(j,k) enddo call dset_order(delta(1:N_det,k), psi_bilinear_matrix_order_reverse, N_det) do j = 1, N_det dressing_delta(j,k) = delta(j,k) enddo enddo deallocate(delta) END_PROVIDER ! ---