use bitmasks BEGIN_PROVIDER [real*8, hessmat, (nMonoEx,nMonoEx)] BEGIN_DOC ! calculate the orbital hessian 2 ! + + by hand, ! determinant per determinant, as for the gradient ! ! we assume that we have natural active orbitals END_DOC implicit none integer :: indx,ihole,ipart integer :: jndx,jhole,jpart character*3 :: iexc,jexc real*8 :: res if (bavard) then write(6,*) ' providing Hessian matrix hessmat ' write(6,*) ' nMonoEx = ',nMonoEx endif do indx=1,nMonoEx do jndx=1,nMonoEx hessmat(indx,jndx)=0.D0 end do end do do indx=1,nMonoEx ihole=excit(1,indx) ipart=excit(2,indx) iexc=excit_class(indx) do jndx=indx,nMonoEx jhole=excit(1,jndx) jpart=excit(2,jndx) jexc=excit_class(jndx) call calc_hess_elem(ihole,ipart,jhole,jpart,res) hessmat(indx,jndx)=res hessmat(jndx,indx)=res end do end do END_PROVIDER subroutine calc_hess_elem(ihole,ipart,jhole,jpart,res) BEGIN_DOC ! eq 19 of Siegbahn et al, Physica Scripta 1980 ! we calculate 2 ! + + ! average over all states is performed. ! no transition between states. END_DOC implicit none integer :: ihole,ipart,ispin,mu,istate integer :: jhole,jpart,jspin integer :: mu_pq, mu_pqrs, mu_rs, mu_rspq, nu_rs,nu real*8 :: res integer(bit_kind), allocatable :: det_mu(:,:) integer(bit_kind), allocatable :: det_nu(:,:) integer(bit_kind), allocatable :: det_mu_pq(:,:) integer(bit_kind), allocatable :: det_mu_rs(:,:) integer(bit_kind), allocatable :: det_nu_rs(:,:) integer(bit_kind), allocatable :: det_mu_pqrs(:,:) integer(bit_kind), allocatable :: det_mu_rspq(:,:) real*8 :: i_H_psi_array(N_states),phase,phase2,phase3 real*8 :: i_H_j_element allocate(det_mu(N_int,2)) allocate(det_nu(N_int,2)) allocate(det_mu_pq(N_int,2)) allocate(det_mu_rs(N_int,2)) allocate(det_nu_rs(N_int,2)) allocate(det_mu_pqrs(N_int,2)) allocate(det_mu_rspq(N_int,2)) integer :: mu_pq_possible integer :: mu_rs_possible integer :: nu_rs_possible integer :: mu_pqrs_possible integer :: mu_rspq_possible res=0.D0 ! the terms <0|E E H |0> do mu=1,n_det ! get the string of the determinant call det_extract(det_mu,mu,N_int) do ispin=1,2 ! do the monoexcitation pq on it call det_copy(det_mu,det_mu_pq,N_int) call do_signed_mono_excitation(det_mu,det_mu_pq,mu_pq & ,ihole,ipart,ispin,phase,mu_pq_possible) if (mu_pq_possible.eq.1) then ! possible, but not necessarily in the list ! do the second excitation do jspin=1,2 call det_copy(det_mu_pq,det_mu_pqrs,N_int) call do_signed_mono_excitation(det_mu_pq,det_mu_pqrs,mu_pqrs& ,jhole,jpart,jspin,phase2,mu_pqrs_possible) ! excitation possible if (mu_pqrs_possible.eq.1) then call i_H_psi(det_mu_pqrs,psi_det,psi_coef,N_int & ,N_det,N_det,N_states,i_H_psi_array) do istate=1,N_states res+=i_H_psi_array(istate)*psi_coef(mu,istate)*phase*phase2 end do end if ! try the de-excitation with opposite sign call det_copy(det_mu_pq,det_mu_pqrs,N_int) call do_signed_mono_excitation(det_mu_pq,det_mu_pqrs,mu_pqrs& ,jpart,jhole,jspin,phase2,mu_pqrs_possible) phase2=-phase2 ! excitation possible if (mu_pqrs_possible.eq.1) then call i_H_psi(det_mu_pqrs,psi_det,psi_coef,N_int & ,N_det,N_det,N_states,i_H_psi_array) do istate=1,N_states res+=i_H_psi_array(istate)*psi_coef(mu,istate)*phase*phase2 end do end if end do end if ! exchange the notion of pq and rs ! do the monoexcitation rs on the initial determinant call det_copy(det_mu,det_mu_rs,N_int) call do_signed_mono_excitation(det_mu,det_mu_rs,mu_rs & ,jhole,jpart,ispin,phase2,mu_rs_possible) if (mu_rs_possible.eq.1) then ! do the second excitation do jspin=1,2 call det_copy(det_mu_rs,det_mu_rspq,N_int) call do_signed_mono_excitation(det_mu_rs,det_mu_rspq,mu_rspq& ,ihole,ipart,jspin,phase3,mu_rspq_possible) ! excitation possible (of course, the result is outside the CAS) if (mu_rspq_possible.eq.1) then call i_H_psi(det_mu_rspq,psi_det,psi_coef,N_int & ,N_det,N_det,N_states,i_H_psi_array) do istate=1,N_states res+=i_H_psi_array(istate)*psi_coef(mu,istate)*phase2*phase3 end do end if ! we may try the de-excitation, with opposite sign call det_copy(det_mu_rs,det_mu_rspq,N_int) call do_signed_mono_excitation(det_mu_rs,det_mu_rspq,mu_rspq& ,ipart,ihole,jspin,phase3,mu_rspq_possible) phase3=-phase3 ! excitation possible (of course, the result is outside the CAS) if (mu_rspq_possible.eq.1) then call i_H_psi(det_mu_rspq,psi_det,psi_coef,N_int & ,N_det,N_det,N_states,i_H_psi_array) do istate=1,N_states res+=i_H_psi_array(istate)*psi_coef(mu,istate)*phase2*phase3 end do end if end do end if ! ! the operator E H E, we have to do a double loop over the determinants ! we still have the determinant mu_pq and the phase in memory if (mu_pq_possible.eq.1) then do nu=1,N_det call det_extract(det_nu,nu,N_int) do jspin=1,2 call det_copy(det_nu,det_nu_rs,N_int) call do_signed_mono_excitation(det_nu,det_nu_rs,nu_rs & ,jhole,jpart,jspin,phase2,nu_rs_possible) ! excitation possible ? if (nu_rs_possible.eq.1) then call i_H_j(det_mu_pq,det_nu_rs,N_int,i_H_j_element) do istate=1,N_states res+=2.D0*i_H_j_element*psi_coef(mu,istate) & *psi_coef(nu,istate)*phase*phase2 end do end if end do end do end if end do end do ! state-averaged Hessian res*=1.D0/dble(N_states) end subroutine calc_hess_elem BEGIN_PROVIDER [real*8, hessmat2, (nMonoEx,nMonoEx)] BEGIN_DOC ! explicit hessian matrix from density matrices and integrals ! of course, this will be used for a direct Davidson procedure later ! we will not store the matrix in real life ! formulas are broken down as functions for the 6 classes of matrix elements ! END_DOC implicit none integer :: i,j,t,u,a,b,indx,jndx,bstart,ustart,indx_shift real*8 :: hessmat_itju real*8 :: hessmat_itja real*8 :: hessmat_itua real*8 :: hessmat_iajb real*8 :: hessmat_iatb real*8 :: hessmat_taub if (bavard) then write(6,*) ' providing Hessian matrix hessmat2 ' write(6,*) ' nMonoEx = ',nMonoEx endif !$OMP PARALLEL DEFAULT(NONE) & !$OMP SHARED(hessmat2,n_core_inact_orb,n_act_orb,n_virt_orb,nMonoEx) & !$OMP PRIVATE(i,indx,jndx,j,ustart,t,u,a,bstart,indx_shift) !$OMP DO ! (DOUBLY OCCUPIED ---> ACT ) do i=1,n_core_inact_orb do t=1,n_act_orb indx = t + (i-1)*n_act_orb jndx=indx ! (DOUBLY OCCUPIED ---> ACT ) do j=i,n_core_inact_orb if (i.eq.j) then ustart=t else ustart=1 end if do u=ustart,n_act_orb hessmat2(jndx,indx)=hessmat_itju(i,t,j,u) jndx+=1 end do end do ! (DOUBLY OCCUPIED ---> VIRTUAL) do j=1,n_core_inact_orb do a=1,n_virt_orb hessmat2(jndx,indx)=hessmat_itja(i,t,j,a) jndx+=1 end do end do ! (ACTIVE ---> VIRTUAL) do u=1,n_act_orb do a=1,n_virt_orb hessmat2(jndx,indx)=hessmat_itua(i,t,u,a) jndx+=1 end do end do end do end do !$OMP END DO NOWAIT indx_shift = n_core_inact_orb*n_act_orb !$OMP DO ! (DOUBLY OCCUPIED ---> VIRTUAL) do a=1,n_virt_orb do i=1,n_core_inact_orb indx = a + (i-1)*n_virt_orb + indx_shift jndx=indx ! (DOUBLY OCCUPIED ---> VIRTUAL) do j=i,n_core_inact_orb if (i.eq.j) then bstart=a else bstart=1 end if do b=bstart,n_virt_orb hessmat2(jndx,indx)=hessmat_iajb(i,a,j,b) jndx+=1 end do end do ! (ACT ---> VIRTUAL) do t=1,n_act_orb do b=1,n_virt_orb hessmat2(jndx,indx)=hessmat_iatb(i,a,t,b) jndx+=1 end do end do end do end do !$OMP END DO NOWAIT indx_shift += n_core_inact_orb*n_virt_orb !$OMP DO ! (ACT ---> VIRTUAL) do a=1,n_virt_orb do t=1,n_act_orb indx = a + (t-1)*n_virt_orb + indx_shift jndx=indx ! (ACT ---> VIRTUAL) do u=t,n_act_orb if (t.eq.u) then bstart=a else bstart=1 end if do b=bstart,n_virt_orb hessmat2(jndx,indx)=hessmat_taub(t,a,u,b) jndx+=1 end do end do end do end do !$OMP END DO !$OMP END PARALLEL do jndx=1,nMonoEx do indx=1,jndx-1 hessmat2(indx,jndx) = hessmat2(jndx,indx) enddo enddo END_PROVIDER real*8 function hessmat_itju(i,t,j,u) BEGIN_DOC ! the orbital hessian for core/inactive -> active, core/inactive -> active ! i, t, j, u are list indices, the corresponding orbitals are ii,tt,jj,uu ! ! we assume natural orbitals END_DOC implicit none integer :: i,t,j,u,ii,tt,uu,v,vv,x,xx,y,jj real*8 :: term,t2 ii=list_core_inact(i) tt=list_act(t) if (i.eq.j) then if (t.eq.u) then ! diagonal element term=occnum(tt)*Fipq(ii,ii)+2.D0*(Fipq(tt,tt)+Fapq(tt,tt)) & -2.D0*(Fipq(ii,ii)+Fapq(ii,ii)) term+=2.D0*(3.D0*bielec_pxxq_no(tt,i,i,tt)-bielec_pqxx_no(tt,tt,i,i)) term-=2.D0*occnum(tt)*(3.D0*bielec_pxxq_no(tt,i,i,tt) & -bielec_pqxx_no(tt,tt,i,i)) term-=occnum(tt)*Fipq(tt,tt) do v=1,n_act_orb vv=list_act(v) do x=1,n_act_orb xx=list_act(x) term+=2.D0*(P0tuvx_no(t,t,v,x)*bielec_pqxx_no(vv,xx,i,i) & +(P0tuvx_no(t,x,v,t)+P0tuvx_no(t,x,t,v))* & bielec_pxxq_no(vv,i,i,xx)) do y=1,n_act_orb term-=2.D0*P0tuvx_no(t,v,x,y)*bielecCI_no(t,v,y,xx) end do end do end do else ! it/iu, t != u uu=list_act(u) term=2.D0*(Fipq(tt,uu)+Fapq(tt,uu)) term+=2.D0*(4.D0*bielec_PxxQ_no(tt,i,j,uu)-bielec_PxxQ_no(uu,i,j,tt) & -bielec_PQxx_no(tt,uu,i,j)) term-=occnum(tt)*Fipq(uu,tt) term-=(occnum(tt)+occnum(uu)) & *(3.D0*bielec_PxxQ_no(tt,i,i,uu)-bielec_PQxx_no(uu,tt,i,i)) do v=1,n_act_orb vv=list_act(v) ! term-=D0tu(u,v)*Fipq(tt,vv) ! published, but inverting t and u seems more correct do x=1,n_act_orb xx=list_act(x) term+=2.D0*(P0tuvx_no(u,t,v,x)*bielec_pqxx_no(vv,xx,i,i) & +(P0tuvx_no(u,x,v,t)+P0tuvx_no(u,x,t,v)) & *bielec_pxxq_no(vv,i,i,xx)) do y=1,n_act_orb term-=2.D0*P0tuvx_no(t,v,x,y)*bielecCI_no(u,v,y,xx) end do end do end do end if else ! it/ju jj=list_core_inact(j) uu=list_act(u) if (t.eq.u) then term=occnum(tt)*Fipq(ii,jj) term-=2.D0*(Fipq(ii,jj)+Fapq(ii,jj)) else term=0.D0 end if term+=2.D0*(4.D0*bielec_PxxQ_no(tt,i,j,uu)-bielec_PxxQ_no(uu,i,j,tt) & -bielec_PQxx_no(tt,uu,i,j)) term-=(occnum(tt)+occnum(uu))* & (4.D0*bielec_PxxQ_no(tt,i,j,uu)-bielec_PxxQ_no(uu,i,j,tt) & -bielec_PQxx_no(uu,tt,i,j)) do v=1,n_act_orb vv=list_act(v) do x=1,n_act_orb xx=list_act(x) term+=2.D0*(P0tuvx_no(u,t,v,x)*bielec_pqxx_no(vv,xx,i,j) & +(P0tuvx_no(u,x,v,t)+P0tuvx_no(u,x,t,v)) & *bielec_pxxq_no(vv,i,j,xx)) end do end do end if term*=2.D0 hessmat_itju=term end function hessmat_itju real*8 function hessmat_itja(i,t,j,a) BEGIN_DOC ! the orbital hessian for core/inactive -> active, core/inactive -> virtual END_DOC implicit none integer :: i,t,j,a,ii,tt,jj,aa,v,vv,x,y real*8 :: term ! it/ja ii=list_core_inact(i) tt=list_act(t) jj=list_core_inact(j) aa=list_virt(a) term=2.D0*(4.D0*bielec_pxxq_no(aa,j,i,tt) & -bielec_pqxx_no(aa,tt,i,j) -bielec_pxxq_no(aa,i,j,tt)) term-=occnum(tt)*(4.D0*bielec_pxxq_no(aa,j,i,tt) & -bielec_pqxx_no(aa,tt,i,j) -bielec_pxxq_no(aa,i,j,tt)) if (i.eq.j) then term+=2.D0*(Fipq(aa,tt)+Fapq(aa,tt)) term-=0.5D0*occnum(tt)*Fipq(aa,tt) do v=1,n_act_orb do x=1,n_act_orb do y=1,n_act_orb term-=P0tuvx_no(t,v,x,y)*bielecCI_no(x,y,v,aa) end do end do end do end if term*=2.D0 hessmat_itja=term end function hessmat_itja real*8 function hessmat_itua(i,t,u,a) BEGIN_DOC ! the orbital hessian for core/inactive -> active, active -> virtual END_DOC implicit none integer :: i,t,u,a,ii,tt,uu,aa,v,vv,x,xx,u3,t3,v3 real*8 :: term ii=list_core_inact(i) tt=list_act(t) t3=t+n_core_inact_orb uu=list_act(u) u3=u+n_core_inact_orb aa=list_virt(a) if (t.eq.u) then term=-occnum(tt)*Fipq(aa,ii) else term=0.D0 end if term-=occnum(uu)*(bielec_pqxx_no(aa,ii,t3,u3)-4.D0*bielec_pqxx_no(aa,uu,t3,i)& +bielec_pxxq_no(aa,t3,u3,ii)) do v=1,n_act_orb vv=list_act(v) v3=v+n_core_inact_orb do x=1,n_act_orb integer :: x3 xx=list_act(x) x3=x+n_core_inact_orb term-=2.D0*(P0tuvx_no(t,u,v,x)*bielec_pqxx_no(aa,ii,v3,x3) & +(P0tuvx_no(t,v,u,x)+P0tuvx_no(t,v,x,u)) & *bielec_pqxx_no(aa,xx,v3,i)) end do end do if (t.eq.u) then term+=Fipq(aa,ii)+Fapq(aa,ii) end if term*=2.D0 hessmat_itua=term end function hessmat_itua real*8 function hessmat_iajb(i,a,j,b) BEGIN_DOC ! the orbital hessian for core/inactive -> virtual, core/inactive -> virtual END_DOC implicit none integer :: i,a,j,b,ii,aa,jj,bb real*8 :: term ii=list_core_inact(i) aa=list_virt(a) if (i.eq.j) then if (a.eq.b) then ! ia/ia term=2.D0*(Fipq(aa,aa)+Fapq(aa,aa)-Fipq(ii,ii)-Fapq(ii,ii)) term+=2.D0*(3.D0*bielec_pxxq_no(aa,i,i,aa)-bielec_pqxx_no(aa,aa,i,i)) else bb=list_virt(b) ! ia/ib term=2.D0*(Fipq(aa,bb)+Fapq(aa,bb)) term+=2.D0*(3.D0*bielec_pxxq_no(aa,i,i,bb)-bielec_pqxx_no(aa,bb,i,i)) end if else ! ia/jb jj=list_core_inact(j) bb=list_virt(b) term=2.D0*(4.D0*bielec_pxxq_no(aa,i,j,bb)-bielec_pqxx_no(aa,bb,i,j) & -bielec_pxxq_no(aa,j,i,bb)) if (a.eq.b) then term-=2.D0*(Fipq(ii,jj)+Fapq(ii,jj)) end if end if term*=2.D0 hessmat_iajb=term end function hessmat_iajb real*8 function hessmat_iatb(i,a,t,b) BEGIN_DOC ! the orbital hessian for core/inactive -> virtual, active -> virtual END_DOC implicit none integer :: i,a,t,b,ii,aa,tt,bb,v,vv,x,y,v3,t3 real*8 :: term ii=list_core_inact(i) aa=list_virt(a) tt=list_act(t) bb=list_virt(b) t3=t+n_core_inact_orb term=occnum(tt)*(4.D0*bielec_pxxq_no(aa,i,t3,bb)-bielec_pxxq_no(aa,t3,i,bb)& -bielec_pqxx_no(aa,bb,i,t3)) if (a.eq.b) then term-=Fipq(tt,ii)+Fapq(tt,ii) term-=0.5D0*occnum(tt)*Fipq(tt,ii) do v=1,n_act_orb do x=1,n_act_orb do y=1,n_act_orb term-=P0tuvx_no(t,v,x,y)*bielecCI_no(x,y,v,ii) end do end do end do end if term*=2.D0 hessmat_iatb=term end function hessmat_iatb real*8 function hessmat_taub(t,a,u,b) BEGIN_DOC ! the orbital hessian for act->virt,act->virt END_DOC implicit none integer :: t,a,u,b,tt,aa,uu,bb,v,vv,x,xx,y integer :: v3,x3 real*8 :: term,t1,t2,t3 tt=list_act(t) aa=list_virt(a) if (t == u) then if (a == b) then ! ta/ta t1=occnum(tt)*Fipq(aa,aa) t2=0.D0 t3=0.D0 t1-=occnum(tt)*Fipq(tt,tt) do v=1,n_act_orb vv=list_act(v) v3=v+n_core_inact_orb do x=1,n_act_orb xx=list_act(x) x3=x+n_core_inact_orb t2+=2.D0*(P0tuvx_no(t,t,v,x)*bielec_pqxx_no(aa,aa,v3,x3) & +(P0tuvx_no(t,x,v,t)+P0tuvx_no(t,x,t,v))* & bielec_pxxq_no(aa,x3,v3,aa)) do y=1,n_act_orb t3-=2.D0*P0tuvx_no(t,v,x,y)*bielecCI_no(t,v,y,xx) end do end do end do term=t1+t2+t3 else bb=list_virt(b) ! ta/tb b/=a term=occnum(tt)*Fipq(aa,bb) do v=1,n_act_orb vv=list_act(v) v3=v+n_core_inact_orb do x=1,n_act_orb xx=list_act(x) x3=x+n_core_inact_orb term+=2.D0*(P0tuvx_no(t,t,v,x)*bielec_pqxx_no(aa,bb,v3,x3) & +(P0tuvx_no(t,x,v,t)+P0tuvx_no(t,x,t,v)) & *bielec_pxxq_no(aa,x3,v3,bb)) end do end do end if else ! ta/ub t/=u uu=list_act(u) bb=list_virt(b) term=0.D0 do v=1,n_act_orb vv=list_act(v) v3=v+n_core_inact_orb do x=1,n_act_orb xx=list_act(x) x3=x+n_core_inact_orb term+=2.D0*(P0tuvx_no(t,u,v,x)*bielec_pqxx_no(aa,bb,v3,x3) & +(P0tuvx_no(t,x,v,u)+P0tuvx_no(t,x,u,v)) & *bielec_pxxq_no(aa,x3,v3,bb)) end do end do if (a.eq.b) then term-=0.5D0*(occnum(tt)*Fipq(uu,tt)+occnum(uu)*Fipq(tt,uu)) do v=1,n_act_orb do y=1,n_act_orb do x=1,n_act_orb term-=P0tuvx_no(t,v,x,y)*bielecCI_no(x,y,v,uu) term-=P0tuvx_no(u,v,x,y)*bielecCI_no(x,y,v,tt) end do end do end do end if end if term*=2.D0 hessmat_taub=term end function hessmat_taub BEGIN_PROVIDER [real*8, hessdiag, (nMonoEx)] BEGIN_DOC ! the diagonal of the Hessian, needed for the Davidson procedure END_DOC implicit none integer :: i,t,a,indx,indx_shift real*8 :: hessmat_itju,hessmat_iajb,hessmat_taub !$OMP PARALLEL DEFAULT(NONE) & !$OMP SHARED(hessdiag,n_core_inact_orb,n_act_orb,n_virt_orb,nMonoEx) & !$OMP PRIVATE(i,indx,t,a,indx_shift) !$OMP DO do i=1,n_core_inact_orb do t=1,n_act_orb indx = t + (i-1)*n_act_orb hessdiag(indx)=hessmat_itju(i,t,i,t) end do end do !$OMP END DO NOWAIT indx_shift = n_core_inact_orb*n_act_orb !$OMP DO do a=1,n_virt_orb do i=1,n_core_inact_orb indx = a + (i-1)*n_virt_orb + indx_shift hessdiag(indx)=hessmat_iajb(i,a,i,a) end do end do !$OMP END DO NOWAIT indx_shift += n_core_inact_orb*n_virt_orb !$OMP DO do a=1,n_virt_orb do t=1,n_act_orb indx = a + (t-1)*n_virt_orb + indx_shift hessdiag(indx)=hessmat_taub(t,a,t,a) end do end do !$OMP END DO !$OMP END PARALLEL END_PROVIDER