mirror of
https://gitlab.com/scemama/qp_plugins_scemama.git
synced 2025-01-05 10:59:10 +01:00
Compare commits
No commits in common. "501cc317d6f20685f2e9fb3363a5950e1bd91d15" and "d5192bcbc918fda3570dfe9b103b036c6fd7990e" have entirely different histories.
501cc317d6
...
d5192bcbc9
@ -10,6 +10,12 @@ doc: Calculated |FCI| energy + |PT2|
|
||||
interface: ezfio
|
||||
size: (determinants.n_states)
|
||||
|
||||
[cisd_guess]
|
||||
type: logical
|
||||
doc: If true, the CASSCF starts with a CISD wave function
|
||||
interface: ezfio,provider,ocaml
|
||||
default: True
|
||||
|
||||
[state_following_casscf]
|
||||
type: logical
|
||||
doc: If |true|, the CASSCF will try to follow the guess CI vector and orbitals
|
||||
@ -17,19 +23,6 @@ interface: ezfio,provider,ocaml
|
||||
default: False
|
||||
|
||||
|
||||
[diag_hess_cas]
|
||||
type: logical
|
||||
doc: If |true|, only the DIAGONAL part of the hessian is retained for the CASSCF
|
||||
interface: ezfio,provider,ocaml
|
||||
default: False
|
||||
|
||||
[hess_cv_cv]
|
||||
type: logical
|
||||
doc: If |true|, the core-virtual - core-virtual part of the hessian is computed
|
||||
interface: ezfio,provider,ocaml
|
||||
default: True
|
||||
|
||||
|
||||
[level_shift_casscf]
|
||||
type: Positive_float
|
||||
doc: Energy shift on the virtual MOs to improve SCF convergence
|
||||
@ -42,10 +35,3 @@ type: logical
|
||||
doc: If true, the two-rdm are computed with a fast algo
|
||||
interface: ezfio,provider,ocaml
|
||||
default: True
|
||||
|
||||
[criterion_casscf]
|
||||
type: character*(32)
|
||||
doc: choice of the criterion for the convergence of the casscf: can be energy or gradients
|
||||
interface: ezfio, provider, ocaml
|
||||
default: energy
|
||||
|
||||
|
@ -2,4 +2,3 @@ cipsi
|
||||
selectors_full
|
||||
generators_cas
|
||||
two_body_rdm
|
||||
dav_general_mat
|
||||
|
@ -4,12 +4,10 @@ program casscf
|
||||
! TODO : Put the documentation of the program here
|
||||
END_DOC
|
||||
call reorder_orbitals_for_casscf
|
||||
no_vvvv_integrals = .True.
|
||||
touch no_vvvv_integrals
|
||||
pt2_max = 0.005
|
||||
! no_vvvv_integrals = .True.
|
||||
! touch no_vvvv_integrals
|
||||
pt2_max = 0.02
|
||||
SOFT_TOUCH pt2_max
|
||||
n_det_max_full = 500
|
||||
touch n_det_max_full
|
||||
call run_stochastic_cipsi
|
||||
call run
|
||||
end
|
||||
@ -33,27 +31,16 @@ subroutine run
|
||||
energy = eone+etwo+ecore
|
||||
|
||||
call write_time(6)
|
||||
call write_int(6,iteration,'CAS-SCF iteration = ')
|
||||
call write_double(6,energy,'CAS-SCF energy = ')
|
||||
call write_double(6,norm_grad_vec2,'Norm of gradients = ')
|
||||
call write_double(6,norm_grad_vec2_tab(1), ' Core-active gradients = ')
|
||||
call write_double(6,norm_grad_vec2_tab(2), ' Core-virtual gradients = ')
|
||||
call write_double(6,norm_grad_vec2_tab(3), ' Active-virtual gradients = ')
|
||||
call write_double(6,energy_improvement, 'Predicted energy improvement = ')
|
||||
call write_int(6,iteration,'CAS-SCF iteration')
|
||||
call write_double(6,energy,'CAS-SCF energy')
|
||||
call write_double(6,energy_improvement, 'Predicted energy improvement')
|
||||
|
||||
if(criterion_casscf == "energy")then
|
||||
converged = dabs(energy_improvement) < thresh_scf
|
||||
else if (criterion_casscf == "gradients")then
|
||||
converged = norm_grad_vec2 < thresh_scf
|
||||
else
|
||||
converged = dabs(energy_improvement) < thresh_scf
|
||||
endif
|
||||
pt2_max = dabs(energy_improvement / pt2_relative_error)
|
||||
|
||||
mo_coef = NewOrbs
|
||||
mo_occ = occnum
|
||||
call save_mos
|
||||
if(.not.converged)then
|
||||
iteration += 1
|
||||
N_det = max(N_det/2 ,N_states)
|
||||
psi_det = psi_det_sorted
|
||||
@ -65,7 +52,6 @@ subroutine run
|
||||
state_following_casscf = state_following_casscf_save
|
||||
touch state_following_casscf
|
||||
endif
|
||||
endif
|
||||
|
||||
enddo
|
||||
|
||||
|
@ -1,44 +0,0 @@
|
||||
|
||||
|
||||
subroutine davidson_diag_sx_mat(N_st, u_in, energies)
|
||||
implicit none
|
||||
integer, intent(in) :: N_st
|
||||
double precision, intent(out) :: u_in(nMonoEx+1,n_states_diag), energies(N_st)
|
||||
integer :: i,j,N_st_tmp, dim_in, sze, N_st_diag_in
|
||||
integer, allocatable :: list_guess(:)
|
||||
double precision, allocatable :: H_jj(:)
|
||||
logical :: converged
|
||||
N_st_diag_in = n_states_diag
|
||||
provide SXmatrix
|
||||
sze = nMonoEx+1
|
||||
dim_in = sze
|
||||
allocate(H_jj(sze), list_guess(sze))
|
||||
H_jj(1) = 0.d0
|
||||
N_st_tmp = 1
|
||||
list_guess(1) = 1
|
||||
do j = 2, nMonoEx+1
|
||||
H_jj(j) = SXmatrix(j,j)
|
||||
if(H_jj(j).lt.0.d0)then
|
||||
list_guess(N_st_tmp) = j
|
||||
N_st_tmp += 1
|
||||
endif
|
||||
enddo
|
||||
if(N_st_tmp .ne. N_st)then
|
||||
print*,'Pb in davidson_diag_sx_mat'
|
||||
print*,'N_st_tmp .ne. N_st'
|
||||
print*,N_st_tmp, N_st
|
||||
stop
|
||||
endif
|
||||
print*,'Number of possibly interesting states = ',N_st
|
||||
print*,'Corresponding diagonal elements of the SX matrix '
|
||||
u_in = 0.d0
|
||||
do i = 1, N_st
|
||||
j = list_guess(i)
|
||||
print*,'i,j',i,j
|
||||
print*,'SX(i,i) = ',H_jj(j)
|
||||
u_in(j,i) = 1.d0
|
||||
enddo
|
||||
call davidson_general(u_in,H_jj,energies,dim_in,sze,N_st,N_st_diag_in,converged,SXmatrix)
|
||||
print*,'energies = ',energies
|
||||
|
||||
end
|
@ -8,31 +8,15 @@ BEGIN_PROVIDER [ integer, nMonoEx ]
|
||||
nMonoEx=n_core_inact_orb*n_act_orb+n_core_inact_orb*n_virt_orb+n_act_orb*n_virt_orb
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [integer, n_c_a_prov]
|
||||
&BEGIN_PROVIDER [integer, n_c_v_prov]
|
||||
&BEGIN_PROVIDER [integer, n_a_v_prov]
|
||||
implicit none
|
||||
n_c_a_prov = n_core_inact_orb * n_act_orb
|
||||
n_c_v_prov = n_core_inact_orb * n_virt_orb
|
||||
n_a_v_prov = n_act_orb * n_virt_orb
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [integer, excit, (2,nMonoEx)]
|
||||
&BEGIN_PROVIDER [character*3, excit_class, (nMonoEx)]
|
||||
&BEGIN_PROVIDER [integer, list_idx_c_a, (3,n_c_a_prov) ]
|
||||
&BEGIN_PROVIDER [integer, list_idx_c_v, (3,n_c_v_prov) ]
|
||||
&BEGIN_PROVIDER [integer, list_idx_a_v, (3,n_a_v_prov) ]
|
||||
&BEGIN_PROVIDER [integer, mat_idx_c_a, (n_core_inact_orb,n_act_orb)
|
||||
&BEGIN_PROVIDER [integer, mat_idx_c_v, (n_core_inact_orb,n_virt_orb)
|
||||
&BEGIN_PROVIDER [integer, mat_idx_a_v, (n_act_orb,n_virt_orb)
|
||||
BEGIN_DOC
|
||||
! a list of the orbitals involved in the excitation
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i,t,a,ii,tt,aa,indx,indx_tmp
|
||||
integer :: i,t,a,ii,tt,aa,indx
|
||||
indx=0
|
||||
indx_tmp = 0
|
||||
do ii=1,n_core_inact_orb
|
||||
i=list_core_inact(ii)
|
||||
do tt=1,n_act_orb
|
||||
@ -41,15 +25,9 @@ END_PROVIDER
|
||||
excit(1,indx)=i
|
||||
excit(2,indx)=t
|
||||
excit_class(indx)='c-a'
|
||||
indx_tmp += 1
|
||||
list_idx_c_a(1,indx_tmp) = indx
|
||||
list_idx_c_a(2,indx_tmp) = ii
|
||||
list_idx_c_a(3,indx_tmp) = tt
|
||||
mat_idx_c_a(ii,tt) = indx
|
||||
end do
|
||||
end do
|
||||
|
||||
indx_tmp = 0
|
||||
do ii=1,n_core_inact_orb
|
||||
i=list_core_inact(ii)
|
||||
do aa=1,n_virt_orb
|
||||
@ -58,15 +36,9 @@ END_PROVIDER
|
||||
excit(1,indx)=i
|
||||
excit(2,indx)=a
|
||||
excit_class(indx)='c-v'
|
||||
indx_tmp += 1
|
||||
list_idx_c_v(1,indx_tmp) = indx
|
||||
list_idx_c_v(2,indx_tmp) = ii
|
||||
list_idx_c_v(3,indx_tmp) = aa
|
||||
mat_idx_c_v(ii,aa) = indx
|
||||
end do
|
||||
end do
|
||||
|
||||
indx_tmp = 0
|
||||
do tt=1,n_act_orb
|
||||
t=list_act(tt)
|
||||
do aa=1,n_virt_orb
|
||||
@ -75,11 +47,6 @@ END_PROVIDER
|
||||
excit(1,indx)=t
|
||||
excit(2,indx)=a
|
||||
excit_class(indx)='a-v'
|
||||
indx_tmp += 1
|
||||
list_idx_a_v(1,indx_tmp) = indx
|
||||
list_idx_a_v(2,indx_tmp) = tt
|
||||
list_idx_a_v(3,indx_tmp) = aa
|
||||
mat_idx_a_v(tt,aa) = indx
|
||||
end do
|
||||
end do
|
||||
|
||||
@ -94,8 +61,6 @@ END_PROVIDER
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [real*8, gradvec2, (nMonoEx)]
|
||||
&BEGIN_PROVIDER [real*8, norm_grad_vec2]
|
||||
&BEGIN_PROVIDER [real*8, norm_grad_vec2_tab, (3)]
|
||||
BEGIN_DOC
|
||||
! calculate the orbital gradient <Psi| H E_pq |Psi> from density
|
||||
! matrices and integrals; Siegbahn et al, Phys Scr 1980
|
||||
@ -104,14 +69,13 @@ END_PROVIDER
|
||||
implicit none
|
||||
integer :: i,t,a,indx
|
||||
real*8 :: gradvec_it,gradvec_ia,gradvec_ta
|
||||
real*8 :: norm_grad
|
||||
|
||||
indx=0
|
||||
norm_grad_vec2_tab = 0.d0
|
||||
do i=1,n_core_inact_orb
|
||||
do t=1,n_act_orb
|
||||
indx+=1
|
||||
gradvec2(indx)=gradvec_it(i,t)
|
||||
norm_grad_vec2_tab(1) += gradvec2(indx)*gradvec2(indx)
|
||||
end do
|
||||
end do
|
||||
|
||||
@ -119,7 +83,6 @@ END_PROVIDER
|
||||
do a=1,n_virt_orb
|
||||
indx+=1
|
||||
gradvec2(indx)=gradvec_ia(i,a)
|
||||
norm_grad_vec2_tab(2) += gradvec2(indx)*gradvec2(indx)
|
||||
end do
|
||||
end do
|
||||
|
||||
@ -127,23 +90,17 @@ END_PROVIDER
|
||||
do a=1,n_virt_orb
|
||||
indx+=1
|
||||
gradvec2(indx)=gradvec_ta(t,a)
|
||||
norm_grad_vec2_tab(3) += gradvec2(indx)*gradvec2(indx)
|
||||
end do
|
||||
end do
|
||||
|
||||
norm_grad_vec2=0.d0
|
||||
norm_grad=0.d0
|
||||
do indx=1,nMonoEx
|
||||
norm_grad_vec2+=gradvec2(indx)*gradvec2(indx)
|
||||
norm_grad+=gradvec2(indx)*gradvec2(indx)
|
||||
end do
|
||||
do i = 1, 3
|
||||
norm_grad_vec2_tab(i) = dsqrt(norm_grad_vec2_tab(i))
|
||||
enddo
|
||||
norm_grad_vec2=sqrt(norm_grad_vec2)
|
||||
if(bavard)then
|
||||
norm_grad=sqrt(norm_grad)
|
||||
write(6,*)
|
||||
write(6,*) ' Norm of the orbital gradient (via D, P and integrals): ', norm_grad_vec2
|
||||
write(6,*) ' Norm of the orbital gradient (via D, P and integrals): ', norm_grad
|
||||
write(6,*)
|
||||
endif
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
@ -1,5 +1,303 @@
|
||||
use bitmasks
|
||||
|
||||
BEGIN_PROVIDER [real*8, hessmat, (nMonoEx,nMonoEx)]
|
||||
BEGIN_DOC
|
||||
! calculate the orbital hessian 2 <Psi| E_pq H E_rs |Psi>
|
||||
! + <Psi| E_pq E_rs H |Psi> + <Psi| E_rs E_pq H |Psi> by hand,
|
||||
! determinant per determinant, as for the gradient
|
||||
!
|
||||
! we assume that we have natural active orbitals
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: indx,ihole,ipart
|
||||
integer :: jndx,jhole,jpart
|
||||
character*3 :: iexc,jexc
|
||||
real*8 :: res
|
||||
|
||||
if (bavard) then
|
||||
write(6,*) ' providing Hessian matrix hessmat '
|
||||
write(6,*) ' nMonoEx = ',nMonoEx
|
||||
endif
|
||||
|
||||
do indx=1,nMonoEx
|
||||
do jndx=1,nMonoEx
|
||||
hessmat(indx,jndx)=0.D0
|
||||
end do
|
||||
end do
|
||||
|
||||
do indx=1,nMonoEx
|
||||
ihole=excit(1,indx)
|
||||
ipart=excit(2,indx)
|
||||
iexc=excit_class(indx)
|
||||
do jndx=indx,nMonoEx
|
||||
jhole=excit(1,jndx)
|
||||
jpart=excit(2,jndx)
|
||||
jexc=excit_class(jndx)
|
||||
call calc_hess_elem(ihole,ipart,jhole,jpart,res)
|
||||
hessmat(indx,jndx)=res
|
||||
hessmat(jndx,indx)=res
|
||||
end do
|
||||
end do
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
subroutine calc_hess_elem(ihole,ipart,jhole,jpart,res)
|
||||
BEGIN_DOC
|
||||
! eq 19 of Siegbahn et al, Physica Scripta 1980
|
||||
! we calculate 2 <Psi| E_pq H E_rs |Psi>
|
||||
! + <Psi| E_pq E_rs H |Psi> + <Psi| E_rs E_pq H |Psi>
|
||||
! average over all states is performed.
|
||||
! no transition between states.
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: ihole,ipart,ispin,mu,istate
|
||||
integer :: jhole,jpart,jspin
|
||||
integer :: mu_pq, mu_pqrs, mu_rs, mu_rspq, nu_rs,nu
|
||||
real*8 :: res
|
||||
integer(bit_kind), allocatable :: det_mu(:,:)
|
||||
integer(bit_kind), allocatable :: det_nu(:,:)
|
||||
integer(bit_kind), allocatable :: det_mu_pq(:,:)
|
||||
integer(bit_kind), allocatable :: det_mu_rs(:,:)
|
||||
integer(bit_kind), allocatable :: det_nu_rs(:,:)
|
||||
integer(bit_kind), allocatable :: det_mu_pqrs(:,:)
|
||||
integer(bit_kind), allocatable :: det_mu_rspq(:,:)
|
||||
real*8 :: i_H_psi_array(N_states),phase,phase2,phase3
|
||||
real*8 :: i_H_j_element
|
||||
allocate(det_mu(N_int,2))
|
||||
allocate(det_nu(N_int,2))
|
||||
allocate(det_mu_pq(N_int,2))
|
||||
allocate(det_mu_rs(N_int,2))
|
||||
allocate(det_nu_rs(N_int,2))
|
||||
allocate(det_mu_pqrs(N_int,2))
|
||||
allocate(det_mu_rspq(N_int,2))
|
||||
integer :: mu_pq_possible
|
||||
integer :: mu_rs_possible
|
||||
integer :: nu_rs_possible
|
||||
integer :: mu_pqrs_possible
|
||||
integer :: mu_rspq_possible
|
||||
|
||||
res=0.D0
|
||||
|
||||
! the terms <0|E E H |0>
|
||||
do mu=1,n_det
|
||||
! get the string of the determinant
|
||||
call det_extract(det_mu,mu,N_int)
|
||||
do ispin=1,2
|
||||
! do the monoexcitation pq on it
|
||||
call det_copy(det_mu,det_mu_pq,N_int)
|
||||
call do_signed_mono_excitation(det_mu,det_mu_pq,mu_pq &
|
||||
,ihole,ipart,ispin,phase,mu_pq_possible)
|
||||
if (mu_pq_possible.eq.1) then
|
||||
! possible, but not necessarily in the list
|
||||
! do the second excitation
|
||||
do jspin=1,2
|
||||
call det_copy(det_mu_pq,det_mu_pqrs,N_int)
|
||||
call do_signed_mono_excitation(det_mu_pq,det_mu_pqrs,mu_pqrs&
|
||||
,jhole,jpart,jspin,phase2,mu_pqrs_possible)
|
||||
! excitation possible
|
||||
if (mu_pqrs_possible.eq.1) then
|
||||
call i_H_psi(det_mu_pqrs,psi_det,psi_coef,N_int &
|
||||
,N_det,N_det,N_states,i_H_psi_array)
|
||||
do istate=1,N_states
|
||||
res+=i_H_psi_array(istate)*psi_coef(mu,istate)*phase*phase2
|
||||
end do
|
||||
end if
|
||||
! try the de-excitation with opposite sign
|
||||
call det_copy(det_mu_pq,det_mu_pqrs,N_int)
|
||||
call do_signed_mono_excitation(det_mu_pq,det_mu_pqrs,mu_pqrs&
|
||||
,jpart,jhole,jspin,phase2,mu_pqrs_possible)
|
||||
phase2=-phase2
|
||||
! excitation possible
|
||||
if (mu_pqrs_possible.eq.1) then
|
||||
call i_H_psi(det_mu_pqrs,psi_det,psi_coef,N_int &
|
||||
,N_det,N_det,N_states,i_H_psi_array)
|
||||
do istate=1,N_states
|
||||
res+=i_H_psi_array(istate)*psi_coef(mu,istate)*phase*phase2
|
||||
end do
|
||||
end if
|
||||
end do
|
||||
end if
|
||||
! exchange the notion of pq and rs
|
||||
! do the monoexcitation rs on the initial determinant
|
||||
call det_copy(det_mu,det_mu_rs,N_int)
|
||||
call do_signed_mono_excitation(det_mu,det_mu_rs,mu_rs &
|
||||
,jhole,jpart,ispin,phase2,mu_rs_possible)
|
||||
if (mu_rs_possible.eq.1) then
|
||||
! do the second excitation
|
||||
do jspin=1,2
|
||||
call det_copy(det_mu_rs,det_mu_rspq,N_int)
|
||||
call do_signed_mono_excitation(det_mu_rs,det_mu_rspq,mu_rspq&
|
||||
,ihole,ipart,jspin,phase3,mu_rspq_possible)
|
||||
! excitation possible (of course, the result is outside the CAS)
|
||||
if (mu_rspq_possible.eq.1) then
|
||||
call i_H_psi(det_mu_rspq,psi_det,psi_coef,N_int &
|
||||
,N_det,N_det,N_states,i_H_psi_array)
|
||||
do istate=1,N_states
|
||||
res+=i_H_psi_array(istate)*psi_coef(mu,istate)*phase2*phase3
|
||||
end do
|
||||
end if
|
||||
! we may try the de-excitation, with opposite sign
|
||||
call det_copy(det_mu_rs,det_mu_rspq,N_int)
|
||||
call do_signed_mono_excitation(det_mu_rs,det_mu_rspq,mu_rspq&
|
||||
,ipart,ihole,jspin,phase3,mu_rspq_possible)
|
||||
phase3=-phase3
|
||||
! excitation possible (of course, the result is outside the CAS)
|
||||
if (mu_rspq_possible.eq.1) then
|
||||
call i_H_psi(det_mu_rspq,psi_det,psi_coef,N_int &
|
||||
,N_det,N_det,N_states,i_H_psi_array)
|
||||
do istate=1,N_states
|
||||
res+=i_H_psi_array(istate)*psi_coef(mu,istate)*phase2*phase3
|
||||
end do
|
||||
end if
|
||||
end do
|
||||
end if
|
||||
!
|
||||
! the operator E H E, we have to do a double loop over the determinants
|
||||
! we still have the determinant mu_pq and the phase in memory
|
||||
if (mu_pq_possible.eq.1) then
|
||||
do nu=1,N_det
|
||||
call det_extract(det_nu,nu,N_int)
|
||||
do jspin=1,2
|
||||
call det_copy(det_nu,det_nu_rs,N_int)
|
||||
call do_signed_mono_excitation(det_nu,det_nu_rs,nu_rs &
|
||||
,jhole,jpart,jspin,phase2,nu_rs_possible)
|
||||
! excitation possible ?
|
||||
if (nu_rs_possible.eq.1) then
|
||||
call i_H_j(det_mu_pq,det_nu_rs,N_int,i_H_j_element)
|
||||
do istate=1,N_states
|
||||
res+=2.D0*i_H_j_element*psi_coef(mu,istate) &
|
||||
*psi_coef(nu,istate)*phase*phase2
|
||||
end do
|
||||
end if
|
||||
end do
|
||||
end do
|
||||
end if
|
||||
end do
|
||||
end do
|
||||
|
||||
! state-averaged Hessian
|
||||
res*=1.D0/dble(N_states)
|
||||
|
||||
end subroutine calc_hess_elem
|
||||
|
||||
BEGIN_PROVIDER [real*8, hessmat2, (nMonoEx,nMonoEx)]
|
||||
BEGIN_DOC
|
||||
! explicit hessian matrix from density matrices and integrals
|
||||
! of course, this will be used for a direct Davidson procedure later
|
||||
! we will not store the matrix in real life
|
||||
! formulas are broken down as functions for the 6 classes of matrix elements
|
||||
!
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: i,j,t,u,a,b,indx,jndx,bstart,ustart,indx_shift
|
||||
|
||||
real*8 :: hessmat_itju
|
||||
real*8 :: hessmat_itja
|
||||
real*8 :: hessmat_itua
|
||||
real*8 :: hessmat_iajb
|
||||
real*8 :: hessmat_iatb
|
||||
real*8 :: hessmat_taub
|
||||
|
||||
if (bavard) then
|
||||
write(6,*) ' providing Hessian matrix hessmat2 '
|
||||
write(6,*) ' nMonoEx = ',nMonoEx
|
||||
endif
|
||||
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP SHARED(hessmat2,n_core_inact_orb,n_act_orb,n_virt_orb,nMonoEx) &
|
||||
!$OMP PRIVATE(i,indx,jndx,j,ustart,t,u,a,bstart,indx_shift)
|
||||
|
||||
!$OMP DO
|
||||
do i=1,n_core_inact_orb
|
||||
do t=1,n_act_orb
|
||||
indx = t + (i-1)*n_act_orb
|
||||
jndx=indx
|
||||
do j=i,n_core_inact_orb
|
||||
if (i.eq.j) then
|
||||
ustart=t
|
||||
else
|
||||
ustart=1
|
||||
end if
|
||||
do u=ustart,n_act_orb
|
||||
hessmat2(jndx,indx)=hessmat_itju(i,t,j,u)
|
||||
jndx+=1
|
||||
end do
|
||||
end do
|
||||
do j=1,n_core_inact_orb
|
||||
do a=1,n_virt_orb
|
||||
hessmat2(jndx,indx)=hessmat_itja(i,t,j,a)
|
||||
jndx+=1
|
||||
end do
|
||||
end do
|
||||
do u=1,n_act_orb
|
||||
do a=1,n_virt_orb
|
||||
hessmat2(jndx,indx)=hessmat_itua(i,t,u,a)
|
||||
jndx+=1
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO NOWAIT
|
||||
|
||||
indx_shift = n_core_inact_orb*n_act_orb
|
||||
!$OMP DO
|
||||
do a=1,n_virt_orb
|
||||
do i=1,n_core_inact_orb
|
||||
indx = a + (i-1)*n_virt_orb + indx_shift
|
||||
jndx=indx
|
||||
do j=i,n_core_inact_orb
|
||||
if (i.eq.j) then
|
||||
bstart=a
|
||||
else
|
||||
bstart=1
|
||||
end if
|
||||
do b=bstart,n_virt_orb
|
||||
hessmat2(jndx,indx)=hessmat_iajb(i,a,j,b)
|
||||
jndx+=1
|
||||
end do
|
||||
end do
|
||||
do t=1,n_act_orb
|
||||
do b=1,n_virt_orb
|
||||
hessmat2(jndx,indx)=hessmat_iatb(i,a,t,b)
|
||||
jndx+=1
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO NOWAIT
|
||||
|
||||
indx_shift += n_core_inact_orb*n_virt_orb
|
||||
!$OMP DO
|
||||
do a=1,n_virt_orb
|
||||
do t=1,n_act_orb
|
||||
indx = a + (t-1)*n_virt_orb + indx_shift
|
||||
jndx=indx
|
||||
do u=t,n_act_orb
|
||||
if (t.eq.u) then
|
||||
bstart=a
|
||||
else
|
||||
bstart=1
|
||||
end if
|
||||
do b=bstart,n_virt_orb
|
||||
hessmat2(jndx,indx)=hessmat_taub(t,a,u,b)
|
||||
jndx+=1
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO
|
||||
|
||||
!$OMP END PARALLEL
|
||||
|
||||
do jndx=1,nMonoEx
|
||||
do indx=1,jndx-1
|
||||
hessmat2(indx,jndx) = hessmat2(jndx,indx)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
real*8 function hessmat_itju(i,t,j,u)
|
||||
BEGIN_DOC
|
||||
! the orbital hessian for core/inactive -> active, core/inactive -> active
|
||||
@ -356,184 +654,3 @@ BEGIN_PROVIDER [real*8, hessdiag, (nMonoEx)]
|
||||
!$OMP END PARALLEL
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [double precision, hessmat, (nMonoEx,nMonoEx)]
|
||||
implicit none
|
||||
integer :: i,j,t,u,a,b
|
||||
integer :: indx,indx_tmp, jndx, jndx_tmp
|
||||
integer :: ustart,bstart
|
||||
real*8 :: hessmat_itju
|
||||
real*8 :: hessmat_itja
|
||||
real*8 :: hessmat_itua
|
||||
real*8 :: hessmat_iajb
|
||||
real*8 :: hessmat_iatb
|
||||
real*8 :: hessmat_taub
|
||||
! c-a c-v a-v
|
||||
! c-a | X X X
|
||||
! c-v | X X
|
||||
! a-v | X
|
||||
|
||||
provide mo_two_e_integrals_in_map
|
||||
|
||||
hessmat = 0.d0
|
||||
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP SHARED(hessmat,n_c_a_prov,list_idx_c_a,n_core_inact_orb,n_act_orb,mat_idx_c_a) &
|
||||
!$OMP PRIVATE(indx_tmp,indx,i,t,j,u,ustart,jndx)
|
||||
|
||||
!$OMP DO
|
||||
!!!! < Core-active| H |Core-active >
|
||||
! Core-active excitations
|
||||
do indx_tmp = 1, n_c_a_prov
|
||||
indx = list_idx_c_a(1,indx_tmp)
|
||||
i = list_idx_c_a(2,indx_tmp)
|
||||
t = list_idx_c_a(3,indx_tmp)
|
||||
! Core-active excitations
|
||||
do j = 1, n_core_inact_orb
|
||||
if (i.eq.j) then
|
||||
ustart=t
|
||||
else
|
||||
ustart=1
|
||||
end if
|
||||
do u=ustart,n_act_orb
|
||||
jndx = mat_idx_c_a(j,u)
|
||||
hessmat(jndx,indx) = hessmat_itju(i,t,j,u)
|
||||
hessmat(indx,jndx) = hessmat(jndx,indx)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO NOWAIT
|
||||
!$OMP END PARALLEL
|
||||
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP SHARED(hessmat,n_c_a_prov,n_c_v_prov,list_idx_c_a,list_idx_c_v) &
|
||||
!$OMP PRIVATE(indx_tmp,jndx_tmp,indx,i,t,j,a,jndx)
|
||||
|
||||
!$OMP DO
|
||||
!!!! < Core-active| H |Core-VIRTUAL >
|
||||
! Core-active excitations
|
||||
do indx_tmp = 1, n_c_a_prov
|
||||
indx = list_idx_c_a(1,indx_tmp)
|
||||
i = list_idx_c_a(2,indx_tmp)
|
||||
t = list_idx_c_a(3,indx_tmp)
|
||||
! Core-VIRTUAL excitations
|
||||
do jndx_tmp = 1, n_c_v_prov
|
||||
jndx = list_idx_c_v(1,jndx_tmp)
|
||||
j = list_idx_c_v(2,jndx_tmp)
|
||||
a = list_idx_c_v(3,jndx_tmp)
|
||||
hessmat(jndx,indx) = hessmat_itja(i,t,j,a)
|
||||
hessmat(indx,jndx) = hessmat(jndx,indx)
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO NOWAIT
|
||||
!$OMP END PARALLEL
|
||||
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP SHARED(hessmat,n_c_a_prov,n_a_v_prov,list_idx_c_a,list_idx_a_v) &
|
||||
!$OMP PRIVATE(indx_tmp,jndx_tmp,indx,i,t,u,a,jndx)
|
||||
|
||||
!$OMP DO
|
||||
!!!! < Core-active| H |ACTIVE-VIRTUAL >
|
||||
! Core-active excitations
|
||||
do indx_tmp = 1, n_c_a_prov
|
||||
indx = list_idx_c_a(1,indx_tmp)
|
||||
i = list_idx_c_a(2,indx_tmp)
|
||||
t = list_idx_c_a(3,indx_tmp)
|
||||
! ACTIVE-VIRTUAL excitations
|
||||
do jndx_tmp = 1, n_a_v_prov
|
||||
jndx = list_idx_a_v(1,jndx_tmp)
|
||||
u = list_idx_a_v(2,jndx_tmp)
|
||||
a = list_idx_a_v(3,jndx_tmp)
|
||||
hessmat(jndx,indx) = hessmat_itua(i,t,u,a)
|
||||
hessmat(indx,jndx) = hessmat(jndx,indx)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
!$OMP END DO NOWAIT
|
||||
!$OMP END PARALLEL
|
||||
|
||||
|
||||
if(hess_cv_cv)then
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP SHARED(hessmat,n_c_v_prov,list_idx_c_v,n_core_inact_orb,n_virt_orb,mat_idx_c_v) &
|
||||
!$OMP PRIVATE(indx_tmp,indx,i,a,j,b,bstart,jndx)
|
||||
!$OMP DO
|
||||
!!!!! < Core-VIRTUAL | H |Core-VIRTUAL >
|
||||
! Core-VIRTUAL excitations
|
||||
do indx_tmp = 1, n_c_v_prov
|
||||
indx = list_idx_c_v(1,indx_tmp)
|
||||
i = list_idx_c_v(2,indx_tmp)
|
||||
a = list_idx_c_v(3,indx_tmp)
|
||||
! Core-VIRTUAL excitations
|
||||
do j = 1, n_core_inact_orb
|
||||
if (i.eq.j) then
|
||||
bstart=a
|
||||
else
|
||||
bstart=1
|
||||
end if
|
||||
do b=bstart,n_virt_orb
|
||||
jndx = mat_idx_c_v(j,b)
|
||||
hessmat(jndx,indx) = hessmat_iajb(i,a,j,b)
|
||||
hessmat(indx,jndx) = hessmat(jndx,indx)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
!$OMP END DO NOWAIT
|
||||
!$OMP END PARALLEL
|
||||
endif
|
||||
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP SHARED(hessmat,n_c_v_prov,n_a_v_prov,list_idx_c_v,list_idx_a_v) &
|
||||
!$OMP PRIVATE(indx_tmp,jndx_tmp,indx,i,a,t,b,jndx)
|
||||
|
||||
!$OMP DO
|
||||
!!!! < Core-VIRTUAL | H |Active-VIRTUAL >
|
||||
! Core-VIRTUAL excitations
|
||||
do indx_tmp = 1, n_c_v_prov
|
||||
indx = list_idx_c_v(1,indx_tmp)
|
||||
i = list_idx_c_v(2,indx_tmp)
|
||||
a = list_idx_c_v(3,indx_tmp)
|
||||
! Active-VIRTUAL excitations
|
||||
do jndx_tmp = 1, n_a_v_prov
|
||||
jndx = list_idx_a_v(1,jndx_tmp)
|
||||
t = list_idx_a_v(2,jndx_tmp)
|
||||
b = list_idx_a_v(3,jndx_tmp)
|
||||
hessmat(jndx,indx) = hessmat_iatb(i,a,t,b)
|
||||
hessmat(indx,jndx) = hessmat(jndx,indx)
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO NOWAIT
|
||||
!$OMP END PARALLEL
|
||||
|
||||
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP SHARED(hessmat,n_a_v_prov,list_idx_a_v,n_act_orb,n_virt_orb,mat_idx_a_v) &
|
||||
!$OMP PRIVATE(indx_tmp,indx,t,a,u,b,bstart,jndx)
|
||||
|
||||
!$OMP DO
|
||||
!!!! < Active-VIRTUAL | H |Active-VIRTUAL >
|
||||
! Active-VIRTUAL excitations
|
||||
do indx_tmp = 1, n_a_v_prov
|
||||
indx = list_idx_a_v(1,indx_tmp)
|
||||
t = list_idx_a_v(2,indx_tmp)
|
||||
a = list_idx_a_v(3,indx_tmp)
|
||||
! Active-VIRTUAL excitations
|
||||
do u=t,n_act_orb
|
||||
if (t.eq.u) then
|
||||
bstart=a
|
||||
else
|
||||
bstart=1
|
||||
end if
|
||||
do b=bstart,n_virt_orb
|
||||
jndx = mat_idx_a_v(u,b)
|
||||
hessmat(jndx,indx) = hessmat_taub(t,a,u,b)
|
||||
hessmat(indx,jndx) = hessmat(jndx,indx)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO NOWAIT
|
||||
!$OMP END PARALLEL
|
||||
|
||||
END_PROVIDER
|
||||
|
@ -1,310 +0,0 @@
|
||||
|
||||
use bitmasks
|
||||
BEGIN_PROVIDER [real*8, hessmat_old, (nMonoEx,nMonoEx)]
|
||||
BEGIN_DOC
|
||||
! calculate the orbital hessian 2 <Psi| E_pq H E_rs |Psi>
|
||||
! + <Psi| E_pq E_rs H |Psi> + <Psi| E_rs E_pq H |Psi> by hand,
|
||||
! determinant per determinant, as for the gradient
|
||||
!
|
||||
! we assume that we have natural active orbitals
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: indx,ihole,ipart
|
||||
integer :: jndx,jhole,jpart
|
||||
character*3 :: iexc,jexc
|
||||
real*8 :: res
|
||||
|
||||
if (bavard) then
|
||||
write(6,*) ' providing Hessian matrix hessmat_old '
|
||||
write(6,*) ' nMonoEx = ',nMonoEx
|
||||
endif
|
||||
|
||||
do indx=1,nMonoEx
|
||||
do jndx=1,nMonoEx
|
||||
hessmat_old(indx,jndx)=0.D0
|
||||
end do
|
||||
end do
|
||||
|
||||
do indx=1,nMonoEx
|
||||
ihole=excit(1,indx)
|
||||
ipart=excit(2,indx)
|
||||
iexc=excit_class(indx)
|
||||
do jndx=indx,nMonoEx
|
||||
jhole=excit(1,jndx)
|
||||
jpart=excit(2,jndx)
|
||||
jexc=excit_class(jndx)
|
||||
call calc_hess_elem(ihole,ipart,jhole,jpart,res)
|
||||
hessmat_old(indx,jndx)=res
|
||||
hessmat_old(jndx,indx)=res
|
||||
end do
|
||||
end do
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
subroutine calc_hess_elem(ihole,ipart,jhole,jpart,res)
|
||||
BEGIN_DOC
|
||||
! eq 19 of Siegbahn et al, Physica Scripta 1980
|
||||
! we calculate 2 <Psi| E_pq H E_rs |Psi>
|
||||
! + <Psi| E_pq E_rs H |Psi> + <Psi| E_rs E_pq H |Psi>
|
||||
! average over all states is performed.
|
||||
! no transition between states.
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: ihole,ipart,ispin,mu,istate
|
||||
integer :: jhole,jpart,jspin
|
||||
integer :: mu_pq, mu_pqrs, mu_rs, mu_rspq, nu_rs,nu
|
||||
real*8 :: res
|
||||
integer(bit_kind), allocatable :: det_mu(:,:)
|
||||
integer(bit_kind), allocatable :: det_nu(:,:)
|
||||
integer(bit_kind), allocatable :: det_mu_pq(:,:)
|
||||
integer(bit_kind), allocatable :: det_mu_rs(:,:)
|
||||
integer(bit_kind), allocatable :: det_nu_rs(:,:)
|
||||
integer(bit_kind), allocatable :: det_mu_pqrs(:,:)
|
||||
integer(bit_kind), allocatable :: det_mu_rspq(:,:)
|
||||
real*8 :: i_H_psi_array(N_states),phase,phase2,phase3
|
||||
real*8 :: i_H_j_element
|
||||
allocate(det_mu(N_int,2))
|
||||
allocate(det_nu(N_int,2))
|
||||
allocate(det_mu_pq(N_int,2))
|
||||
allocate(det_mu_rs(N_int,2))
|
||||
allocate(det_nu_rs(N_int,2))
|
||||
allocate(det_mu_pqrs(N_int,2))
|
||||
allocate(det_mu_rspq(N_int,2))
|
||||
integer :: mu_pq_possible
|
||||
integer :: mu_rs_possible
|
||||
integer :: nu_rs_possible
|
||||
integer :: mu_pqrs_possible
|
||||
integer :: mu_rspq_possible
|
||||
|
||||
res=0.D0
|
||||
|
||||
! the terms <0|E E H |0>
|
||||
do mu=1,n_det
|
||||
! get the string of the determinant
|
||||
call det_extract(det_mu,mu,N_int)
|
||||
do ispin=1,2
|
||||
! do the monoexcitation pq on it
|
||||
call det_copy(det_mu,det_mu_pq,N_int)
|
||||
call do_signed_mono_excitation(det_mu,det_mu_pq,mu_pq &
|
||||
,ihole,ipart,ispin,phase,mu_pq_possible)
|
||||
if (mu_pq_possible.eq.1) then
|
||||
! possible, but not necessarily in the list
|
||||
! do the second excitation
|
||||
do jspin=1,2
|
||||
call det_copy(det_mu_pq,det_mu_pqrs,N_int)
|
||||
call do_signed_mono_excitation(det_mu_pq,det_mu_pqrs,mu_pqrs&
|
||||
,jhole,jpart,jspin,phase2,mu_pqrs_possible)
|
||||
! excitation possible
|
||||
if (mu_pqrs_possible.eq.1) then
|
||||
call i_H_psi(det_mu_pqrs,psi_det,psi_coef,N_int &
|
||||
,N_det,N_det,N_states,i_H_psi_array)
|
||||
do istate=1,N_states
|
||||
res+=i_H_psi_array(istate)*psi_coef(mu,istate)*phase*phase2
|
||||
end do
|
||||
end if
|
||||
! try the de-excitation with opposite sign
|
||||
call det_copy(det_mu_pq,det_mu_pqrs,N_int)
|
||||
call do_signed_mono_excitation(det_mu_pq,det_mu_pqrs,mu_pqrs&
|
||||
,jpart,jhole,jspin,phase2,mu_pqrs_possible)
|
||||
phase2=-phase2
|
||||
! excitation possible
|
||||
if (mu_pqrs_possible.eq.1) then
|
||||
call i_H_psi(det_mu_pqrs,psi_det,psi_coef,N_int &
|
||||
,N_det,N_det,N_states,i_H_psi_array)
|
||||
do istate=1,N_states
|
||||
res+=i_H_psi_array(istate)*psi_coef(mu,istate)*phase*phase2
|
||||
end do
|
||||
end if
|
||||
end do
|
||||
end if
|
||||
! exchange the notion of pq and rs
|
||||
! do the monoexcitation rs on the initial determinant
|
||||
call det_copy(det_mu,det_mu_rs,N_int)
|
||||
call do_signed_mono_excitation(det_mu,det_mu_rs,mu_rs &
|
||||
,jhole,jpart,ispin,phase2,mu_rs_possible)
|
||||
if (mu_rs_possible.eq.1) then
|
||||
! do the second excitation
|
||||
do jspin=1,2
|
||||
call det_copy(det_mu_rs,det_mu_rspq,N_int)
|
||||
call do_signed_mono_excitation(det_mu_rs,det_mu_rspq,mu_rspq&
|
||||
,ihole,ipart,jspin,phase3,mu_rspq_possible)
|
||||
! excitation possible (of course, the result is outside the CAS)
|
||||
if (mu_rspq_possible.eq.1) then
|
||||
call i_H_psi(det_mu_rspq,psi_det,psi_coef,N_int &
|
||||
,N_det,N_det,N_states,i_H_psi_array)
|
||||
do istate=1,N_states
|
||||
res+=i_H_psi_array(istate)*psi_coef(mu,istate)*phase2*phase3
|
||||
end do
|
||||
end if
|
||||
! we may try the de-excitation, with opposite sign
|
||||
call det_copy(det_mu_rs,det_mu_rspq,N_int)
|
||||
call do_signed_mono_excitation(det_mu_rs,det_mu_rspq,mu_rspq&
|
||||
,ipart,ihole,jspin,phase3,mu_rspq_possible)
|
||||
phase3=-phase3
|
||||
! excitation possible (of course, the result is outside the CAS)
|
||||
if (mu_rspq_possible.eq.1) then
|
||||
call i_H_psi(det_mu_rspq,psi_det,psi_coef,N_int &
|
||||
,N_det,N_det,N_states,i_H_psi_array)
|
||||
do istate=1,N_states
|
||||
res+=i_H_psi_array(istate)*psi_coef(mu,istate)*phase2*phase3
|
||||
end do
|
||||
end if
|
||||
end do
|
||||
end if
|
||||
!
|
||||
! the operator E H E, we have to do a double loop over the determinants
|
||||
! we still have the determinant mu_pq and the phase in memory
|
||||
if (mu_pq_possible.eq.1) then
|
||||
do nu=1,N_det
|
||||
call det_extract(det_nu,nu,N_int)
|
||||
do jspin=1,2
|
||||
call det_copy(det_nu,det_nu_rs,N_int)
|
||||
call do_signed_mono_excitation(det_nu,det_nu_rs,nu_rs &
|
||||
,jhole,jpart,jspin,phase2,nu_rs_possible)
|
||||
! excitation possible ?
|
||||
if (nu_rs_possible.eq.1) then
|
||||
call i_H_j(det_mu_pq,det_nu_rs,N_int,i_H_j_element)
|
||||
do istate=1,N_states
|
||||
res+=2.D0*i_H_j_element*psi_coef(mu,istate) &
|
||||
*psi_coef(nu,istate)*phase*phase2
|
||||
end do
|
||||
end if
|
||||
end do
|
||||
end do
|
||||
end if
|
||||
end do
|
||||
end do
|
||||
|
||||
! state-averaged Hessian
|
||||
res*=1.D0/dble(N_states)
|
||||
|
||||
end subroutine calc_hess_elem
|
||||
|
||||
BEGIN_PROVIDER [real*8, hessmat_peter, (nMonoEx,nMonoEx)]
|
||||
BEGIN_DOC
|
||||
! explicit hessian matrix from density matrices and integrals
|
||||
! of course, this will be used for a direct Davidson procedure later
|
||||
! we will not store the matrix in real life
|
||||
! formulas are broken down as functions for the 6 classes of matrix elements
|
||||
!
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: i,j,t,u,a,b,indx,jndx,bstart,ustart,indx_shift
|
||||
|
||||
real*8 :: hessmat_itju
|
||||
real*8 :: hessmat_itja
|
||||
real*8 :: hessmat_itua
|
||||
real*8 :: hessmat_iajb
|
||||
real*8 :: hessmat_iatb
|
||||
real*8 :: hessmat_taub
|
||||
|
||||
if (bavard) then
|
||||
write(6,*) ' providing Hessian matrix hessmat_peter '
|
||||
write(6,*) ' nMonoEx = ',nMonoEx
|
||||
endif
|
||||
provide mo_two_e_integrals_in_map
|
||||
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP SHARED(hessmat_peter,n_core_inact_orb,n_act_orb,n_virt_orb,nMonoEx) &
|
||||
!$OMP PRIVATE(i,indx,jndx,j,ustart,t,u,a,bstart,indx_shift)
|
||||
|
||||
!$OMP DO
|
||||
! (DOUBLY OCCUPIED ---> ACT )
|
||||
do i=1,n_core_inact_orb
|
||||
do t=1,n_act_orb
|
||||
indx = t + (i-1)*n_act_orb
|
||||
jndx=indx
|
||||
! (DOUBLY OCCUPIED ---> ACT )
|
||||
do j=i,n_core_inact_orb
|
||||
if (i.eq.j) then
|
||||
ustart=t
|
||||
else
|
||||
ustart=1
|
||||
end if
|
||||
do u=ustart,n_act_orb
|
||||
hessmat_peter(jndx,indx)=hessmat_itju(i,t,j,u)
|
||||
jndx+=1
|
||||
end do
|
||||
end do
|
||||
! (DOUBLY OCCUPIED ---> VIRTUAL)
|
||||
do j=1,n_core_inact_orb
|
||||
do a=1,n_virt_orb
|
||||
hessmat_peter(jndx,indx)=hessmat_itja(i,t,j,a)
|
||||
jndx+=1
|
||||
end do
|
||||
end do
|
||||
! (ACTIVE ---> VIRTUAL)
|
||||
do u=1,n_act_orb
|
||||
do a=1,n_virt_orb
|
||||
hessmat_peter(jndx,indx)=hessmat_itua(i,t,u,a)
|
||||
jndx+=1
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO NOWAIT
|
||||
|
||||
indx_shift = n_core_inact_orb*n_act_orb
|
||||
!$OMP DO
|
||||
! (DOUBLY OCCUPIED ---> VIRTUAL)
|
||||
do a=1,n_virt_orb
|
||||
do i=1,n_core_inact_orb
|
||||
indx = a + (i-1)*n_virt_orb + indx_shift
|
||||
jndx=indx
|
||||
! (DOUBLY OCCUPIED ---> VIRTUAL)
|
||||
do j=i,n_core_inact_orb
|
||||
if (i.eq.j) then
|
||||
bstart=a
|
||||
else
|
||||
bstart=1
|
||||
end if
|
||||
do b=bstart,n_virt_orb
|
||||
hessmat_peter(jndx,indx)=hessmat_iajb(i,a,j,b)
|
||||
jndx+=1
|
||||
end do
|
||||
end do
|
||||
! (ACT ---> VIRTUAL)
|
||||
do t=1,n_act_orb
|
||||
do b=1,n_virt_orb
|
||||
hessmat_peter(jndx,indx)=hessmat_iatb(i,a,t,b)
|
||||
jndx+=1
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO NOWAIT
|
||||
|
||||
indx_shift += n_core_inact_orb*n_virt_orb
|
||||
!$OMP DO
|
||||
! (ACT ---> VIRTUAL)
|
||||
do a=1,n_virt_orb
|
||||
do t=1,n_act_orb
|
||||
indx = a + (t-1)*n_virt_orb + indx_shift
|
||||
jndx=indx
|
||||
! (ACT ---> VIRTUAL)
|
||||
do u=t,n_act_orb
|
||||
if (t.eq.u) then
|
||||
bstart=a
|
||||
else
|
||||
bstart=1
|
||||
end if
|
||||
do b=bstart,n_virt_orb
|
||||
hessmat_peter(jndx,indx)=hessmat_taub(t,a,u,b)
|
||||
jndx+=1
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO
|
||||
|
||||
!$OMP END PARALLEL
|
||||
|
||||
do jndx=1,nMonoEx
|
||||
do indx=1,jndx-1
|
||||
hessmat_peter(indx,jndx) = hessmat_peter(jndx,indx)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
|
||||
END_PROVIDER
|
||||
|
@ -1,5 +1,4 @@
|
||||
BEGIN_PROVIDER [real*8, SXmatrix, (nMonoEx+1,nMonoEx+1)]
|
||||
&BEGIN_PROVIDER [integer, n_guess_sx_mat ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Single-excitation matrix
|
||||
@ -17,34 +16,24 @@
|
||||
SXmatrix(1,i+1)=gradvec2(i)
|
||||
SXmatrix(1+i,1)=gradvec2(i)
|
||||
end do
|
||||
if(diag_hess_cas)then
|
||||
do i = 1, nMonoEx
|
||||
SXmatrix(i+1,i+1) = hessdiag(i)
|
||||
enddo
|
||||
else
|
||||
|
||||
do i=1,nMonoEx
|
||||
do j=1,nMonoEx
|
||||
SXmatrix(i+1,j+1)=hessmat(i,j)
|
||||
SXmatrix(j+1,i+1)=hessmat(i,j)
|
||||
SXmatrix(i+1,j+1)=hessmat2(i,j)
|
||||
SXmatrix(j+1,i+1)=hessmat2(i,j)
|
||||
end do
|
||||
end do
|
||||
endif
|
||||
|
||||
do i = 1, nMonoEx
|
||||
SXmatrix(i+1,i+1) += level_shift_casscf
|
||||
enddo
|
||||
n_guess_sx_mat = 1
|
||||
do i = 1, nMonoEx
|
||||
if(SXmatrix(i+1,i+1).lt.0.d0 )then
|
||||
n_guess_sx_mat += 1
|
||||
endif
|
||||
enddo
|
||||
if (bavard) then
|
||||
do i=2,nMonoEx
|
||||
write(6,*) ' diagonal of the Hessian : ',i,hessmat(i,i)
|
||||
write(6,*) ' diagonal of the Hessian : ',i,hessmat2(i,i)
|
||||
end do
|
||||
end if
|
||||
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [real*8, SXeigenvec, (nMonoEx+1,nMonoEx+1)]
|
||||
@ -53,32 +42,11 @@ END_PROVIDER
|
||||
BEGIN_DOC
|
||||
! Eigenvectors/eigenvalues of the single-excitation matrix
|
||||
END_DOC
|
||||
if(nMonoEx+1.gt.n_det_max_full)then
|
||||
if(bavard)then
|
||||
print*,'Using the Davidson algorithm to diagonalize the SXmatrix'
|
||||
endif
|
||||
double precision, allocatable :: u_in(:,:),energies(:)
|
||||
allocate(u_in(nMonoEx+1,n_states_diag),energies(n_guess_sx_mat))
|
||||
call davidson_diag_sx_mat(n_guess_sx_mat, u_in, energies)
|
||||
integer :: i,j
|
||||
SXeigenvec = 0.d0
|
||||
SXeigenval = 0.d0
|
||||
do i = 1, n_guess_sx_mat
|
||||
SXeigenval(i) = energies(i)
|
||||
do j = 1, nMonoEx+1
|
||||
SXeigenvec(j,i) = u_in(j,i)
|
||||
enddo
|
||||
enddo
|
||||
else
|
||||
if(bavard)then
|
||||
print*,'Diagonalize the SXmatrix with Jacobi'
|
||||
endif
|
||||
call lapack_diag(SXeigenval,SXeigenvec,SXmatrix,nMonoEx+1,nMonoEx+1)
|
||||
endif
|
||||
if (bavard) then
|
||||
write(6,*) ' SXdiag : lowest eigenvalues '
|
||||
write(6,*) ' SXdiag : lowest 5 eigenvalues '
|
||||
write(6,*) ' 1 - ',SXeigenval(1),SXeigenvec(1,1)
|
||||
if(n_guess_sx_mat.gt.0)then
|
||||
if(nmonoex.gt.0)then
|
||||
write(6,*) ' 2 - ',SXeigenval(2),SXeigenvec(1,2)
|
||||
write(6,*) ' 3 - ',SXeigenval(3),SXeigenvec(1,3)
|
||||
write(6,*) ' 4 - ',SXeigenval(4),SXeigenvec(1,4)
|
||||
@ -109,8 +77,8 @@ END_PROVIDER
|
||||
best_vector_ovrlp_casscf = -1000
|
||||
do i=1,nMonoEx+1
|
||||
if (SXeigenval(i).lt.0.D0) then
|
||||
if (dabs(SXeigenvec(1,i)).gt.best_overlap_casscf) then
|
||||
best_overlap_casscf=dabs(SXeigenvec(1,i))
|
||||
if (abs(SXeigenvec(1,i)).gt.best_overlap_casscf) then
|
||||
best_overlap_casscf=abs(SXeigenvec(1,i))
|
||||
best_vector_ovrlp_casscf = i
|
||||
end if
|
||||
end if
|
||||
|
@ -45,12 +45,12 @@
|
||||
imono = max_overlap(i)
|
||||
iorb = excit(1,imono)
|
||||
jorb = excit(2,imono)
|
||||
if (excit_class(imono) == "c-a" .and.hessmat(imono,imono).gt.0.d0)then ! core --> active rotation
|
||||
if (excit_class(imono) == "c-a" .and.hessmat2(imono,imono).gt.0.d0)then ! core --> active rotation
|
||||
n_orb_swap += 1
|
||||
orb_swap(1,n_orb_swap) = iorb ! core
|
||||
orb_swap(2,n_orb_swap) = jorb ! active
|
||||
index_orb_swap(n_orb_swap) = imono
|
||||
else if (excit_class(imono) == "a-v" .and.hessmat(imono,imono).gt.0.d0)then ! active --> virtual rotation
|
||||
else if (excit_class(imono) == "a-v" .and.hessmat2(imono,imono).gt.0.d0)then ! active --> virtual rotation
|
||||
n_orb_swap += 1
|
||||
orb_swap(1,n_orb_swap) = jorb ! virtual
|
||||
orb_swap(2,n_orb_swap) = iorb ! active
|
||||
|
Loading…
Reference in New Issue
Block a user