1
0
mirror of https://gitlab.com/scemama/qp_plugins_scemama.git synced 2025-01-03 01:55:52 +01:00

Added export_trexio routine

This commit is contained in:
Anthony Scemama 2023-03-09 10:50:44 +01:00
parent 2d20035e02
commit b72ea96670
7 changed files with 555 additions and 527 deletions

View File

@ -1,4 +1,5 @@
determinants
davidson_undressed
fci
trexio
zmq

23
devel/qmcchem/install Executable file
View File

@ -0,0 +1,23 @@
#!/bin/bash
# Check if the QP_ROOT environment variable is set.
if [[ -z ${QP_ROOT} ]]
then
print "The QP_ROOT environment variable is not set."
print "Please reload the quantum_package.rc file."
exit -1
fi
pkg-config --libs trexio > LIB
scripts_list="qp_import_trexio.py"
# Destroy ONLY the symbolic link for the scripts to be used in the
# ${QP_ROOT}/scripts/ directory.
for i in $scripts_list
do
find ${QP_ROOT}/scripts/$i -type l -delete
done
# Create symlink in scripts
ln --symbolic ${PWD}/qp_import_trexio.py $QP_ROOT/scripts

View File

@ -42,4 +42,6 @@ program save_for_qmc
write(iunit,*) e_ref
close(iunit)
call export_trexio
end

View File

@ -1,530 +1,7 @@
program export_trexio
program export_trexio_prog
implicit none
read_wf = .True.
SOFT_TOUCH read_wf
call run
call export_trexio
end
subroutine run
use trexio
implicit none
BEGIN_DOC
! Exports the wave function in TREXIO format
END_DOC
integer(trexio_t) :: f ! TREXIO file handle
integer(trexio_exit_code) :: rc
double precision, allocatable :: factor(:)
print *, 'TREXIO file : '//trim(trexio_filename)
print *, ''
call system('cp '//trim(trexio_filename)//' '//trim(trexio_filename)//'.bak')
if (backend == 0) then
f = trexio_open(trexio_filename, 'u', TREXIO_HDF5, rc)
else if (backend == 1) then
f = trexio_open(trexio_filename, 'u', TREXIO_TEXT, rc)
endif
if (f == 0_8) then
print *, 'Unable to open TREXIO file for writing'
print *, 'rc = ', rc
stop -1
endif
! ------------------------------------------------------------------------------
! Electrons
! ---------
print *, 'Electrons'
rc = trexio_write_electron_up_num(f, elec_alpha_num)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_electron_dn_num(f, elec_beta_num)
call trexio_assert(rc, TREXIO_SUCCESS)
! Nuclei
! ------
print *, 'Nuclei'
rc = trexio_write_nucleus_num(f, nucl_num)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_nucleus_charge(f, nucl_charge)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_nucleus_coord(f, nucl_coord_transp)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_nucleus_label(f, nucl_label, 32)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_nucleus_repulsion(f, nuclear_repulsion)
call trexio_assert(rc, TREXIO_SUCCESS)
! Pseudo-potentials
! -----------------
if (do_pseudo) then
print *, 'ECP'
integer :: num
num = 0
do k=1,pseudo_klocmax
do i=1,nucl_num
if (pseudo_dz_k(i,k) /= 0.d0) then
num = num+1
end if
end do
end do
do l=0,pseudo_lmax
do k=1,pseudo_kmax
do i=1,nucl_num
if (pseudo_dz_kl(i,k,l) /= 0.d0) then
num = num+1
end if
end do
end do
end do
integer, allocatable :: ang_mom(:), nucleus_index(:), power(:), lmax(:)
double precision, allocatable :: exponent(:), coefficient(:)
allocate(ang_mom(num), nucleus_index(num), exponent(num), coefficient(num), power(num), &
lmax(nucl_num) )
do i=1,nucl_num
lmax(i) = -1
do l=0,pseudo_lmax
do k=1,pseudo_kmax
if (pseudo_dz_kl_transp(k,l,i) /= 0.d0) then
lmax(i) = max(lmax(i), l)
end if
end do
end do
end do
j = 0
do i=1,nucl_num
do k=1,pseudo_klocmax
if (pseudo_dz_k_transp(k,i) /= 0.d0) then
j = j+1
ang_mom(j) = lmax(i)+1
nucleus_index(j) = i
exponent(j) = pseudo_dz_k_transp(k,i)
coefficient(j) = pseudo_v_k_transp(k,i)
power(j) = pseudo_n_k_transp(k,i)
end if
end do
do l=0,lmax(i)
do k=1,pseudo_kmax
if (pseudo_dz_kl_transp(k,l,i) /= 0.d0) then
j = j+1
ang_mom(j) = l
nucleus_index(j) = i
exponent(j) = pseudo_dz_kl_transp(k,l,i)
coefficient(j) = pseudo_v_kl_transp(k,l,i)
power(j) = pseudo_n_kl_transp(k,l,i)
end if
end do
end do
end do
lmax(:) = lmax(:)+1
rc = trexio_write_ecp_max_ang_mom_plus_1(f, lmax)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_ecp_z_core(f, int(nucl_charge_remove))
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_ecp_num(f, num)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_ecp_ang_mom(f, ang_mom)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_ecp_nucleus_index(f, nucleus_index)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_ecp_exponent(f, exponent)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_ecp_coefficient(f, coefficient)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_ecp_power(f, power)
call trexio_assert(rc, TREXIO_SUCCESS)
endif
! Basis
! -----
print *, 'Basis'
rc = trexio_write_basis_type(f, 'Gaussian', len('Gaussian'))
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_basis_prim_num(f, prim_num)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_basis_shell_num(f, shell_num)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_basis_nucleus_index(f, basis_nucleus_index)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_basis_shell_ang_mom(f, shell_ang_mom)
call trexio_assert(rc, TREXIO_SUCCESS)
allocate(factor(shell_num))
if (ao_normalized) then
factor(1:shell_num) = shell_normalization_factor(1:shell_num)
else
factor(1:shell_num) = 1.d0
endif
rc = trexio_write_basis_shell_factor(f, factor)
call trexio_assert(rc, TREXIO_SUCCESS)
deallocate(factor)
rc = trexio_write_basis_shell_index(f, shell_index)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_basis_exponent(f, prim_expo)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_basis_coefficient(f, prim_coef)
call trexio_assert(rc, TREXIO_SUCCESS)
allocate(factor(prim_num))
if (primitives_normalized) then
factor(1:prim_num) = prim_normalization_factor(1:prim_num)
else
factor(1:prim_num) = 1.d0
endif
rc = trexio_write_basis_prim_factor(f, factor)
call trexio_assert(rc, TREXIO_SUCCESS)
deallocate(factor)
! Atomic orbitals
! ---------------
print *, 'AOs'
rc = trexio_write_ao_num(f, ao_num)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_ao_cartesian(f, 1)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_ao_shell(f, ao_shell)
call trexio_assert(rc, TREXIO_SUCCESS)
integer :: i, pow0(3), powA(3), j, k, l, nz
double precision :: normA, norm0, C_A(3), overlap_x, overlap_z, overlap_y, c
nz=100
C_A(1) = 0.d0
C_A(2) = 0.d0
C_A(3) = 0.d0
allocate(factor(ao_num))
if (ao_normalized) then
do i=1,ao_num
l = ao_first_of_shell(ao_shell(i))
factor(i) = (ao_coef_normalized(i,1)+tiny(1.d0))/(ao_coef_normalized(l,1)+tiny(1.d0))
enddo
else
factor(:) = 1.d0
endif
rc = trexio_write_ao_normalization(f, factor)
call trexio_assert(rc, TREXIO_SUCCESS)
deallocate(factor)
! One-e AO integrals
! ------------------
if (export_ao_one_e_ints) then
print *, 'AO one-e integrals'
rc = trexio_write_ao_1e_int_overlap(f,ao_overlap)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_ao_1e_int_kinetic(f,ao_kinetic_integrals)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_ao_1e_int_potential_n_e(f,ao_integrals_n_e)
call trexio_assert(rc, TREXIO_SUCCESS)
if (do_pseudo) then
rc = trexio_write_ao_1e_int_ecp(f, ao_pseudo_integrals_local + ao_pseudo_integrals_non_local)
call trexio_assert(rc, TREXIO_SUCCESS)
endif
rc = trexio_write_ao_1e_int_core_hamiltonian(f,ao_one_e_integrals)
call trexio_assert(rc, TREXIO_SUCCESS)
end if
! Two-e AO integrals
! ------------------
if (export_ao_two_e_ints) then
print *, 'AO two-e integrals'
PROVIDE ao_two_e_integrals_in_map
integer(8), parameter :: BUFSIZE=10000_8
double precision :: eri_buffer(BUFSIZE), integral
integer(4) :: eri_index(4,BUFSIZE)
integer(8) :: icount, offset
double precision, external :: get_ao_two_e_integral
icount = 0_8
offset = 0_8
do l=1,ao_num
do k=1,ao_num
do j=l,ao_num
do i=k,ao_num
if (i==j .and. k<l) cycle
if (i<j) cycle
integral = get_ao_two_e_integral(i,j,k,l,ao_integrals_map)
if (integral == 0.d0) cycle
icount += 1_8
eri_buffer(icount) = integral
eri_index(1,icount) = i
eri_index(2,icount) = j
eri_index(3,icount) = k
eri_index(4,icount) = l
if (icount == BUFSIZE) then
rc = trexio_write_ao_2e_int_eri(f, offset, icount, eri_index, eri_buffer)
call trexio_assert(rc, TREXIO_SUCCESS)
offset += icount
icount = 0_8
end if
end do
end do
end do
end do
if (icount >= 0_8) then
rc = trexio_write_ao_2e_int_eri(f, offset, icount, eri_index, eri_buffer)
call trexio_assert(rc, TREXIO_SUCCESS)
end if
end if
! Molecular orbitals
! ------------------
print *, 'MOs'
rc = trexio_write_mo_type(f, mo_label, len(trim(mo_label)))
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_mo_num(f, mo_num)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_mo_coefficient(f, mo_coef)
call trexio_assert(rc, TREXIO_SUCCESS)
! if (trim(mo_label) == 'Canonical') then
! rc = trexio_write_mo_energy(f, fock_matrix_diag_mo)
! call trexio_assert(rc, TREXIO_SUCCESS)
! endif
! One-e MO integrals
! ------------------
if (export_mo_two_e_ints) then
print *, 'MO one-e integrals'
rc = trexio_write_mo_1e_int_kinetic(f,mo_kinetic_integrals)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_mo_1e_int_potential_n_e(f,mo_integrals_n_e)
call trexio_assert(rc, TREXIO_SUCCESS)
if (do_pseudo) then
rc = trexio_write_mo_1e_int_ecp(f,mo_pseudo_integrals_local)
call trexio_assert(rc, TREXIO_SUCCESS)
endif
rc = trexio_write_mo_1e_int_core_hamiltonian(f,mo_one_e_integrals)
call trexio_assert(rc, TREXIO_SUCCESS)
end if
! Two-e MO integrals
! ------------------
if (export_mo_two_e_ints) then
print *, 'MO two-e integrals'
PROVIDE mo_two_e_integrals_in_map
double precision, external :: mo_two_e_integral
icount = 0_8
offset = 0_8
do l=1,mo_num
do k=1,mo_num
do j=l,mo_num
do i=k,mo_num
if (i==j .and. k<l) cycle
if (i<j) cycle
integral = mo_two_e_integral(i,j,k,l)
if (integral == 0.d0) cycle
icount += 1_8
eri_buffer(icount) = integral
eri_index(1,icount) = i
eri_index(2,icount) = j
eri_index(3,icount) = k
eri_index(4,icount) = l
if (icount == BUFSIZE) then
rc = trexio_write_mo_2e_int_eri(f, offset, icount, eri_index, eri_buffer)
call trexio_assert(rc, TREXIO_SUCCESS)
offset += icount
icount = 0_8
end if
end do
end do
end do
end do
if (icount > 0_8) then
rc = trexio_write_mo_2e_int_eri(f, offset, icount, eri_index, eri_buffer)
call trexio_assert(rc, TREXIO_SUCCESS)
end if
end if
! One-e RDM
! ---------
rc = trexio_write_rdm_1e(f,one_e_dm_mo)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_rdm_1e_up(f,one_e_dm_mo_alpha_average)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_rdm_1e_dn(f,one_e_dm_mo_beta_average)
call trexio_assert(rc, TREXIO_SUCCESS)
! Two-e RDM
! ---------
if (export_rdm) then
PROVIDE two_e_dm_mo
print *, 'Two-e RDM'
icount = 0_8
offset = 0_8
do l=1,mo_num
do k=1,mo_num
do j=1,mo_num
do i=1,mo_num
integral = two_e_dm_mo(i,j,k,l)
if (integral == 0.d0) cycle
icount += 1_8
eri_buffer(icount) = integral
eri_index(1,icount) = i
eri_index(2,icount) = j
eri_index(3,icount) = k
eri_index(4,icount) = l
if (icount == BUFSIZE) then
rc = trexio_write_rdm_2e(f, offset, icount, eri_index, eri_buffer)
call trexio_assert(rc, TREXIO_SUCCESS)
offset += icount
icount = 0_8
end if
end do
end do
end do
end do
if (icount >= 0_8) then
rc = trexio_write_rdm_2e(f, offset, icount, eri_index, eri_buffer)
call trexio_assert(rc, TREXIO_SUCCESS)
end if
end if
! ------------------------------------------------------------------------------
! Determinants
! ------------
integer*8, allocatable :: det_buffer(:,:,:)
double precision, allocatable :: coef_buffer(:,:)
integer :: nint
! rc = trexio_read_determinant_int64_num(f, nint)
! call trexio_assert(rc, TREXIO_SUCCESS)
nint = N_int
if (nint /= N_int) then
stop 'Problem with N_int'
endif
allocate ( det_buffer(nint, 2, BUFSIZE), coef_buffer(BUFSIZE, n_states) )
icount = 0_8
offset = 0_8
rc = trexio_write_state_num(f, n_states)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_set_state (f, 0)
call trexio_assert(rc, TREXIO_SUCCESS)
do k=1,n_det
icount += 1_8
det_buffer(1:nint, 1:2, icount) = psi_det(1:N_int, 1:2, k)
coef_buffer(icount,1:N_states) = psi_coef(k,1:N_states)
if (icount == BUFSIZE) then
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_determinant_list(f, offset, icount, det_buffer)
call trexio_assert(rc, TREXIO_SUCCESS)
do i=1,N_states
rc = trexio_set_state (f, i-1)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_determinant_coefficient(f, offset, icount, coef_buffer(1,i))
end do
rc = trexio_set_state (f, 0)
offset += icount
icount = 0_8
end if
end do
if (icount >= 0_8) then
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_determinant_list(f, offset, icount, det_buffer)
call trexio_assert(rc, TREXIO_SUCCESS)
do i=1,N_states
rc = trexio_set_state (f, i-1)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_determinant_coefficient(f, offset, icount, coef_buffer(1,i))
end do
rc = trexio_set_state (f, 0)
end if
deallocate ( det_buffer, coef_buffer )
rc = trexio_close(f)
call trexio_assert(rc, TREXIO_SUCCESS)
end
! -*- mode: f90 -*-

View File

@ -0,0 +1,524 @@
subroutine export_trexio
use trexio
implicit none
BEGIN_DOC
! Exports the wave function in TREXIO format
END_DOC
integer(trexio_t) :: f ! TREXIO file handle
integer(trexio_exit_code) :: rc
double precision, allocatable :: factor(:)
print *, 'TREXIO file : '//trim(trexio_filename)
print *, ''
call system('cp '//trim(trexio_filename)//' '//trim(trexio_filename)//'.bak')
if (backend == 0) then
f = trexio_open(trexio_filename, 'u', TREXIO_HDF5, rc)
else if (backend == 1) then
f = trexio_open(trexio_filename, 'u', TREXIO_TEXT, rc)
endif
if (f == 0_8) then
print *, 'Unable to open TREXIO file for writing'
print *, 'rc = ', rc
stop -1
endif
call ezfio_set_trexio_trexio_file(trexio_filename)
! ------------------------------------------------------------------------------
! Electrons
! ---------
print *, 'Electrons'
rc = trexio_write_electron_up_num(f, elec_alpha_num)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_electron_dn_num(f, elec_beta_num)
call trexio_assert(rc, TREXIO_SUCCESS)
! Nuclei
! ------
print *, 'Nuclei'
rc = trexio_write_nucleus_num(f, nucl_num)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_nucleus_charge(f, nucl_charge)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_nucleus_coord(f, nucl_coord_transp)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_nucleus_label(f, nucl_label, 32)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_nucleus_repulsion(f, nuclear_repulsion)
call trexio_assert(rc, TREXIO_SUCCESS)
! Pseudo-potentials
! -----------------
if (do_pseudo) then
print *, 'ECP'
integer :: num
num = 0
do k=1,pseudo_klocmax
do i=1,nucl_num
if (pseudo_dz_k(i,k) /= 0.d0) then
num = num+1
end if
end do
end do
do l=0,pseudo_lmax
do k=1,pseudo_kmax
do i=1,nucl_num
if (pseudo_dz_kl(i,k,l) /= 0.d0) then
num = num+1
end if
end do
end do
end do
integer, allocatable :: ang_mom(:), nucleus_index(:), power(:), lmax(:)
double precision, allocatable :: exponent(:), coefficient(:)
allocate(ang_mom(num), nucleus_index(num), exponent(num), coefficient(num), power(num), &
lmax(nucl_num) )
do i=1,nucl_num
lmax(i) = -1
do l=0,pseudo_lmax
do k=1,pseudo_kmax
if (pseudo_dz_kl_transp(k,l,i) /= 0.d0) then
lmax(i) = max(lmax(i), l)
end if
end do
end do
end do
j = 0
do i=1,nucl_num
do k=1,pseudo_klocmax
if (pseudo_dz_k_transp(k,i) /= 0.d0) then
j = j+1
ang_mom(j) = lmax(i)+1
nucleus_index(j) = i
exponent(j) = pseudo_dz_k_transp(k,i)
coefficient(j) = pseudo_v_k_transp(k,i)
power(j) = pseudo_n_k_transp(k,i)
end if
end do
do l=0,lmax(i)
do k=1,pseudo_kmax
if (pseudo_dz_kl_transp(k,l,i) /= 0.d0) then
j = j+1
ang_mom(j) = l
nucleus_index(j) = i
exponent(j) = pseudo_dz_kl_transp(k,l,i)
coefficient(j) = pseudo_v_kl_transp(k,l,i)
power(j) = pseudo_n_kl_transp(k,l,i)
end if
end do
end do
end do
lmax(:) = lmax(:)+1
rc = trexio_write_ecp_max_ang_mom_plus_1(f, lmax)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_ecp_z_core(f, int(nucl_charge_remove))
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_ecp_num(f, num)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_ecp_ang_mom(f, ang_mom)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_ecp_nucleus_index(f, nucleus_index)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_ecp_exponent(f, exponent)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_ecp_coefficient(f, coefficient)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_ecp_power(f, power)
call trexio_assert(rc, TREXIO_SUCCESS)
endif
! Basis
! -----
print *, 'Basis'
rc = trexio_write_basis_type(f, 'Gaussian', len('Gaussian'))
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_basis_prim_num(f, prim_num)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_basis_shell_num(f, shell_num)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_basis_nucleus_index(f, basis_nucleus_index)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_basis_shell_ang_mom(f, shell_ang_mom)
call trexio_assert(rc, TREXIO_SUCCESS)
allocate(factor(shell_num))
if (ao_normalized) then
factor(1:shell_num) = shell_normalization_factor(1:shell_num)
else
factor(1:shell_num) = 1.d0
endif
rc = trexio_write_basis_shell_factor(f, factor)
call trexio_assert(rc, TREXIO_SUCCESS)
deallocate(factor)
rc = trexio_write_basis_shell_index(f, shell_index)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_basis_exponent(f, prim_expo)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_basis_coefficient(f, prim_coef)
call trexio_assert(rc, TREXIO_SUCCESS)
allocate(factor(prim_num))
if (primitives_normalized) then
factor(1:prim_num) = prim_normalization_factor(1:prim_num)
else
factor(1:prim_num) = 1.d0
endif
rc = trexio_write_basis_prim_factor(f, factor)
call trexio_assert(rc, TREXIO_SUCCESS)
deallocate(factor)
! Atomic orbitals
! ---------------
print *, 'AOs'
rc = trexio_write_ao_num(f, ao_num)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_ao_cartesian(f, 1)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_ao_shell(f, ao_shell)
call trexio_assert(rc, TREXIO_SUCCESS)
integer :: i, pow0(3), powA(3), j, k, l, nz
double precision :: normA, norm0, C_A(3), overlap_x, overlap_z, overlap_y, c
nz=100
C_A(1) = 0.d0
C_A(2) = 0.d0
C_A(3) = 0.d0
allocate(factor(ao_num))
if (ao_normalized) then
do i=1,ao_num
l = ao_first_of_shell(ao_shell(i))
factor(i) = (ao_coef_normalized(i,1)+tiny(1.d0))/(ao_coef_normalized(l,1)+tiny(1.d0))
enddo
else
factor(:) = 1.d0
endif
rc = trexio_write_ao_normalization(f, factor)
call trexio_assert(rc, TREXIO_SUCCESS)
deallocate(factor)
! One-e AO integrals
! ------------------
if (export_ao_one_e_ints) then
print *, 'AO one-e integrals'
rc = trexio_write_ao_1e_int_overlap(f,ao_overlap)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_ao_1e_int_kinetic(f,ao_kinetic_integrals)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_ao_1e_int_potential_n_e(f,ao_integrals_n_e)
call trexio_assert(rc, TREXIO_SUCCESS)
if (do_pseudo) then
rc = trexio_write_ao_1e_int_ecp(f, ao_pseudo_integrals_local + ao_pseudo_integrals_non_local)
call trexio_assert(rc, TREXIO_SUCCESS)
endif
rc = trexio_write_ao_1e_int_core_hamiltonian(f,ao_one_e_integrals)
call trexio_assert(rc, TREXIO_SUCCESS)
end if
! Two-e AO integrals
! ------------------
if (export_ao_two_e_ints) then
print *, 'AO two-e integrals'
PROVIDE ao_two_e_integrals_in_map
integer(8), parameter :: BUFSIZE=10000_8
double precision :: eri_buffer(BUFSIZE), integral
integer(4) :: eri_index(4,BUFSIZE)
integer(8) :: icount, offset
double precision, external :: get_ao_two_e_integral
icount = 0_8
offset = 0_8
do l=1,ao_num
do k=1,ao_num
do j=l,ao_num
do i=k,ao_num
if (i==j .and. k<l) cycle
if (i<j) cycle
integral = get_ao_two_e_integral(i,j,k,l,ao_integrals_map)
if (integral == 0.d0) cycle
icount += 1_8
eri_buffer(icount) = integral
eri_index(1,icount) = i
eri_index(2,icount) = j
eri_index(3,icount) = k
eri_index(4,icount) = l
if (icount == BUFSIZE) then
rc = trexio_write_ao_2e_int_eri(f, offset, icount, eri_index, eri_buffer)
call trexio_assert(rc, TREXIO_SUCCESS)
offset += icount
icount = 0_8
end if
end do
end do
end do
end do
if (icount >= 0_8) then
rc = trexio_write_ao_2e_int_eri(f, offset, icount, eri_index, eri_buffer)
call trexio_assert(rc, TREXIO_SUCCESS)
end if
end if
! Molecular orbitals
! ------------------
print *, 'MOs'
rc = trexio_write_mo_type(f, mo_label, len(trim(mo_label)))
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_mo_num(f, mo_num)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_mo_coefficient(f, mo_coef)
call trexio_assert(rc, TREXIO_SUCCESS)
! if (trim(mo_label) == 'Canonical') then
! rc = trexio_write_mo_energy(f, fock_matrix_diag_mo)
! call trexio_assert(rc, TREXIO_SUCCESS)
! endif
! One-e MO integrals
! ------------------
if (export_mo_two_e_ints) then
print *, 'MO one-e integrals'
rc = trexio_write_mo_1e_int_kinetic(f,mo_kinetic_integrals)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_mo_1e_int_potential_n_e(f,mo_integrals_n_e)
call trexio_assert(rc, TREXIO_SUCCESS)
if (do_pseudo) then
rc = trexio_write_mo_1e_int_ecp(f,mo_pseudo_integrals_local)
call trexio_assert(rc, TREXIO_SUCCESS)
endif
rc = trexio_write_mo_1e_int_core_hamiltonian(f,mo_one_e_integrals)
call trexio_assert(rc, TREXIO_SUCCESS)
end if
! Two-e MO integrals
! ------------------
if (export_mo_two_e_ints) then
print *, 'MO two-e integrals'
PROVIDE mo_two_e_integrals_in_map
double precision, external :: mo_two_e_integral
icount = 0_8
offset = 0_8
do l=1,mo_num
do k=1,mo_num
do j=l,mo_num
do i=k,mo_num
if (i==j .and. k<l) cycle
if (i<j) cycle
integral = mo_two_e_integral(i,j,k,l)
if (integral == 0.d0) cycle
icount += 1_8
eri_buffer(icount) = integral
eri_index(1,icount) = i
eri_index(2,icount) = j
eri_index(3,icount) = k
eri_index(4,icount) = l
if (icount == BUFSIZE) then
rc = trexio_write_mo_2e_int_eri(f, offset, icount, eri_index, eri_buffer)
call trexio_assert(rc, TREXIO_SUCCESS)
offset += icount
icount = 0_8
end if
end do
end do
end do
end do
if (icount > 0_8) then
rc = trexio_write_mo_2e_int_eri(f, offset, icount, eri_index, eri_buffer)
call trexio_assert(rc, TREXIO_SUCCESS)
end if
end if
! One-e RDM
! ---------
rc = trexio_write_rdm_1e(f,one_e_dm_mo)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_rdm_1e_up(f,one_e_dm_mo_alpha_average)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_rdm_1e_dn(f,one_e_dm_mo_beta_average)
call trexio_assert(rc, TREXIO_SUCCESS)
! Two-e RDM
! ---------
if (export_rdm) then
PROVIDE two_e_dm_mo
print *, 'Two-e RDM'
icount = 0_8
offset = 0_8
do l=1,mo_num
do k=1,mo_num
do j=1,mo_num
do i=1,mo_num
integral = two_e_dm_mo(i,j,k,l)
if (integral == 0.d0) cycle
icount += 1_8
eri_buffer(icount) = integral
eri_index(1,icount) = i
eri_index(2,icount) = j
eri_index(3,icount) = k
eri_index(4,icount) = l
if (icount == BUFSIZE) then
rc = trexio_write_rdm_2e(f, offset, icount, eri_index, eri_buffer)
call trexio_assert(rc, TREXIO_SUCCESS)
offset += icount
icount = 0_8
end if
end do
end do
end do
end do
if (icount >= 0_8) then
rc = trexio_write_rdm_2e(f, offset, icount, eri_index, eri_buffer)
call trexio_assert(rc, TREXIO_SUCCESS)
end if
end if
! ------------------------------------------------------------------------------
! Determinants
! ------------
integer*8, allocatable :: det_buffer(:,:,:)
double precision, allocatable :: coef_buffer(:,:)
integer :: nint
! rc = trexio_read_determinant_int64_num(f, nint)
! call trexio_assert(rc, TREXIO_SUCCESS)
nint = N_int
if (nint /= N_int) then
stop 'Problem with N_int'
endif
allocate ( det_buffer(nint, 2, BUFSIZE), coef_buffer(BUFSIZE, n_states) )
icount = 0_8
offset = 0_8
rc = trexio_write_state_num(f, n_states)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_set_state (f, 0)
call trexio_assert(rc, TREXIO_SUCCESS)
do k=1,n_det
icount += 1_8
det_buffer(1:nint, 1:2, icount) = psi_det(1:N_int, 1:2, k)
coef_buffer(icount,1:N_states) = psi_coef(k,1:N_states)
if (icount == BUFSIZE) then
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_determinant_list(f, offset, icount, det_buffer)
call trexio_assert(rc, TREXIO_SUCCESS)
do i=1,N_states
rc = trexio_set_state (f, i-1)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_determinant_coefficient(f, offset, icount, coef_buffer(1,i))
end do
rc = trexio_set_state (f, 0)
offset += icount
icount = 0_8
end if
end do
if (icount >= 0_8) then
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_determinant_list(f, offset, icount, det_buffer)
call trexio_assert(rc, TREXIO_SUCCESS)
do i=1,N_states
rc = trexio_set_state (f, i-1)
call trexio_assert(rc, TREXIO_SUCCESS)
rc = trexio_write_determinant_coefficient(f, offset, icount, coef_buffer(1,i))
end do
rc = trexio_set_state (f, 0)
end if
deallocate ( det_buffer, coef_buffer )
rc = trexio_close(f)
call trexio_assert(rc, TREXIO_SUCCESS)
end
! -*- mode: f90 -*-

View File

@ -111,7 +111,7 @@ subroutine run
integer*8 :: offset, icount
open(unit=104,file='tmp')
! open(unit=104,file='tmp')
offset = 0_8
icount = BUFSIZE
rc = TREXIO_SUCCESS
@ -125,7 +125,7 @@ subroutine run
integral = V(m)
call two_e_integrals_index(i, j, k, l, buffer_i(m) )
buffer_values(m) = integral
write(104,'(4(I5,X),2D22.15)') i,j,k,l, integral
! write(104,'(4(I5,X),2D22.15)') i,j,k,l, integral
enddo
call insert_into_ao_integrals_map(int(icount,4),buffer_i,buffer_values)
offset = offset + icount

View File

@ -150,6 +150,7 @@ def write_ezfio(trexio_filename, filename):
nucl_shell_num.append(m)
m = 0
prev = i
print (len(nucl_shell_num), nucl_num)
assert (len(nucl_shell_num) == nucl_num)
shell_prim_num = []