1
0
mirror of https://gitlab.com/scemama/qp_plugins_scemama.git synced 2025-01-05 02:48:42 +01:00

added the possibility to have a gradient based convergence in casscf

This commit is contained in:
Emmanuel Giner 2021-07-02 18:04:05 +02:00
parent 08b3f247f0
commit 501cc317d6
3 changed files with 31 additions and 22 deletions

View File

@ -10,12 +10,6 @@ doc: Calculated |FCI| energy + |PT2|
interface: ezfio interface: ezfio
size: (determinants.n_states) size: (determinants.n_states)
[cisd_guess]
type: logical
doc: If true, the CASSCF starts with a CISD wave function
interface: ezfio,provider,ocaml
default: True
[state_following_casscf] [state_following_casscf]
type: logical type: logical
doc: If |true|, the CASSCF will try to follow the guess CI vector and orbitals doc: If |true|, the CASSCF will try to follow the guess CI vector and orbitals
@ -48,3 +42,10 @@ type: logical
doc: If true, the two-rdm are computed with a fast algo doc: If true, the two-rdm are computed with a fast algo
interface: ezfio,provider,ocaml interface: ezfio,provider,ocaml
default: True default: True
[criterion_casscf]
type: character*(32)
doc: choice of the criterion for the convergence of the casscf: can be energy or gradients
interface: ezfio, provider, ocaml
default: energy

View File

@ -41,12 +41,19 @@ subroutine run
call write_double(6,norm_grad_vec2_tab(3), ' Active-virtual gradients = ') call write_double(6,norm_grad_vec2_tab(3), ' Active-virtual gradients = ')
call write_double(6,energy_improvement, 'Predicted energy improvement = ') call write_double(6,energy_improvement, 'Predicted energy improvement = ')
if(criterion_casscf == "energy")then
converged = dabs(energy_improvement) < thresh_scf converged = dabs(energy_improvement) < thresh_scf
else if (criterion_casscf == "gradients")then
converged = norm_grad_vec2 < thresh_scf
else
converged = dabs(energy_improvement) < thresh_scf
endif
pt2_max = dabs(energy_improvement / pt2_relative_error) pt2_max = dabs(energy_improvement / pt2_relative_error)
mo_coef = NewOrbs mo_coef = NewOrbs
mo_occ = occnum mo_occ = occnum
call save_mos call save_mos
if(.not.converged)then
iteration += 1 iteration += 1
N_det = max(N_det/2 ,N_states) N_det = max(N_det/2 ,N_states)
psi_det = psi_det_sorted psi_det = psi_det_sorted
@ -58,6 +65,7 @@ subroutine run
state_following_casscf = state_following_casscf_save state_following_casscf = state_following_casscf_save
touch state_following_casscf touch state_following_casscf
endif endif
endif
enddo enddo

View File

@ -54,9 +54,9 @@ END_PROVIDER
! Eigenvectors/eigenvalues of the single-excitation matrix ! Eigenvectors/eigenvalues of the single-excitation matrix
END_DOC END_DOC
if(nMonoEx+1.gt.n_det_max_full)then if(nMonoEx+1.gt.n_det_max_full)then
! if(bavard)then if(bavard)then
print*,'Using the Davidson algorithm to diagonalize the SXmatrix' print*,'Using the Davidson algorithm to diagonalize the SXmatrix'
! endif endif
double precision, allocatable :: u_in(:,:),energies(:) double precision, allocatable :: u_in(:,:),energies(:)
allocate(u_in(nMonoEx+1,n_states_diag),energies(n_guess_sx_mat)) allocate(u_in(nMonoEx+1,n_states_diag),energies(n_guess_sx_mat))
call davidson_diag_sx_mat(n_guess_sx_mat, u_in, energies) call davidson_diag_sx_mat(n_guess_sx_mat, u_in, energies)
@ -70,9 +70,9 @@ END_PROVIDER
enddo enddo
enddo enddo
else else
! if(bavard)then if(bavard)then
print*,'Diagonalize the SXmatrix with Jacobi' print*,'Diagonalize the SXmatrix with Jacobi'
! endif endif
call lapack_diag(SXeigenval,SXeigenvec,SXmatrix,nMonoEx+1,nMonoEx+1) call lapack_diag(SXeigenval,SXeigenvec,SXmatrix,nMonoEx+1,nMonoEx+1)
endif endif
if (bavard) then if (bavard) then
@ -84,9 +84,9 @@ END_PROVIDER
write(6,*) ' 4 - ',SXeigenval(4),SXeigenvec(1,4) write(6,*) ' 4 - ',SXeigenval(4),SXeigenvec(1,4)
write(6,*) ' 5 - ',SXeigenval(5),SXeigenvec(1,5) write(6,*) ' 5 - ',SXeigenval(5),SXeigenvec(1,5)
endif endif
endif
write(6,*) write(6,*)
write(6,*) ' SXdiag : lowest eigenvalue = ',SXeigenval(1) write(6,*) ' SXdiag : lowest eigenvalue = ',SXeigenval(1)
endif
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [real*8, energy_improvement] BEGIN_PROVIDER [real*8, energy_improvement]