1
0
mirror of https://gitlab.com/scemama/qp_plugins_scemama.git synced 2025-01-07 03:43:08 +01:00
qp_plugins_scemama/devel/ccsd_gpu/mo_integrals_cc.irp.f

1680 lines
42 KiB
FortranFixed
Raw Normal View History

2023-07-16 15:39:37 +02:00
! F
subroutine gen_f_space(det,n1,n2,list1,list2,f)
implicit none
integer, intent(in) :: n1,n2
integer, intent(in) :: list1(n1),list2(n2)
integer(bit_kind), intent(in) :: det(N_int,2)
double precision, intent(out) :: f(n1,n2)
double precision, allocatable :: tmp_F(:,:)
integer :: i1,i2,idx1,idx2
allocate(tmp_F(mo_num,mo_num))
call get_fock_matrix_spin(det,1,tmp_F)
!$OMP PARALLEL &
!$OMP SHARED(tmp_F,f,n1,n2,list1,list2) &
!$OMP PRIVATE(idx1,idx2,i1,i2)&
!$OMP DEFAULT(NONE)
!$OMP DO collapse(1)
do i2 = 1, n2
do i1 = 1, n1
idx2 = list2(i2)
idx1 = list1(i1)
f(i1,i2) = tmp_F(idx1,idx2)
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
deallocate(tmp_F)
end
! V
subroutine gen_v_space(n1,n2,n3,n4,list1,list2,list3,list4,v)
use gpu_module
implicit none
integer, intent(in) :: n1,n2,n3,n4
integer, intent(in) :: list1(n1),list2(n2),list3(n3),list4(n4)
double precision, intent(out) :: v(n1,n2,n3,n4)
integer :: i1,i2,i3,i4,idx1,idx2,idx3,idx4,k
if (do_ao_cholesky) then
double precision, allocatable :: buffer(:,:,:,:)
double precision, allocatable :: v1(:,:,:), v2(:,:,:)
allocate(v1(cholesky_mo_num,n1,n3), v2(cholesky_mo_num,n2,n4))
allocate(buffer(n1,n3,n2,n4))
call gen_v_space_chol(n1,n3,list1,list3,v1,cholesky_mo_num)
call gen_v_space_chol(n2,n4,list2,list4,v2,cholesky_mo_num)
call gpu_dgemm('T','N', n1*n3, n2*n4, cholesky_mo_num, 1.d0, &
v1, cholesky_mo_num, &
v2, cholesky_mo_num, 0.d0, buffer, n1*n3)
deallocate(v1,v2)
!$OMP PARALLEL DO PRIVATE(i1,i2,i3,i4)
do i4 = 1, n4
do i3 = 1, n3
do i2 = 1, n2
do i1 = 1, n1
v(i1,i2,i3,i4) = buffer(i1,i3,i2,i4)
enddo
enddo
enddo
enddo
!$OMP END PARALLEL DO
else
double precision :: get_two_e_integral
PROVIDE mo_two_e_integrals_in_map
!$OMP PARALLEL &
!$OMP SHARED(n1,n2,n3,n4,list1,list2,list3,list4,v,mo_integrals_map) &
!$OMP PRIVATE(i1,i2,i3,i4,idx1,idx2,idx3,idx4)&
!$OMP DEFAULT(NONE)
!$OMP DO collapse(3)
do i4 = 1, n4
do i3 = 1, n3
do i2 = 1, n2
do i1 = 1, n1
idx4 = list4(i4)
idx3 = list3(i3)
idx2 = list2(i2)
idx1 = list1(i1)
v(i1,i2,i3,i4) = get_two_e_integral(idx1,idx2,idx3,idx4,mo_integrals_map)
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
endif
end
subroutine gen_v_space_chol(n1,n3,list1,list3,v,ldv)
implicit none
integer, intent(in) :: n1,n3,ldv
integer, intent(in) :: list1(n1),list3(n3)
double precision, intent(out) :: v(ldv,n1,n3)
integer :: i1,i3,idx1,idx3,k
!$OMP PARALLEL DO PRIVATE(i1,i3,idx1,idx3,k)
do i3=1,n3
idx3 = list3(i3)
do i1=1,n1
idx1 = list1(i1)
do k=1,cholesky_mo_num
v(k,i1,i3) = cholesky_mo_transp(k,idx1,idx3)
enddo
enddo
enddo
!$OMP END PARALLEL DO
end
! full
BEGIN_PROVIDER [double precision, cc_space_v, (mo_num,mo_num,mo_num,mo_num)]
use gpu_module
implicit none
if (do_ao_cholesky) then
integer :: i1,i2,i3,i4
double precision, allocatable :: buffer(:,:,:)
call set_multiple_levels_omp(.False.)
!$OMP PARALLEL &
!$OMP SHARED(cc_space_v,mo_num,cholesky_mo_transp,cholesky_mo_num) &
!$OMP PRIVATE(i1,i2,i3,i4,k,buffer)&
!$OMP DEFAULT(NONE)
allocate(buffer(mo_num,mo_num,mo_num))
!$OMP DO
do i4 = 1, mo_num
call gpu_dgemm('T','N', mo_num*mo_num, mo_num, cholesky_mo_num, 1.d0, &
cholesky_mo_transp, cholesky_mo_num, &
cholesky_mo_transp(1,1,i4), cholesky_mo_num, 0.d0, buffer, mo_num*mo_num)
do i2 = 1, mo_num
do i3 = 1, mo_num
do i1 = 1, mo_num
cc_space_v(i1,i2,i3,i4) = buffer(i1,i3,i2)
enddo
enddo
enddo
enddo
!$OMP END DO
deallocate(buffer)
!$OMP END PARALLEL
else
integer :: i,j,k,l
double precision :: get_two_e_integral
PROVIDE mo_two_e_integrals_in_map
!$OMP PARALLEL &
!$OMP SHARED(cc_space_v,mo_num,mo_integrals_map) &
!$OMP PRIVATE(i,j,k,l) &
!$OMP DEFAULT(NONE)
!$OMP DO collapse(3)
do l = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do i = 1, mo_num
cc_space_v(i,j,k,l) = get_two_e_integral(i,j,k,l,mo_integrals_map)
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
endif
END_PROVIDER
! oooo
BEGIN_PROVIDER [double precision, cc_space_v_oooo, (cc_nOa, cc_nOa, cc_nOa, cc_nOa)]
use gpu_module
implicit none
if (do_ao_cholesky) then
integer :: i1, i2, i3, i4
integer :: n1, n2, n3, n4
n1 = size(cc_space_v_oooo,1)
n2 = size(cc_space_v_oooo,2)
n3 = size(cc_space_v_oooo,3)
n4 = size(cc_space_v_oooo,4)
double precision, allocatable :: buffer(:,:,:,:)
allocate(buffer(n1,n3,n2,n4))
call gpu_dgemm('T','N', n1*n3, n2*n4, cholesky_mo_num, 1.d0, &
cc_space_v_oo_chol, cholesky_mo_num, &
cc_space_v_oo_chol, cholesky_mo_num, 0.d0, buffer, n1*n3)
!$OMP PARALLEL DO PRIVATE(i1,i2,i3,i4) COLLAPSE(2)
do i4 = 1, n4
do i3 = 1, n3
do i2 = 1, n2
do i1 = 1, n1
cc_space_v_oooo(i1,i2,i3,i4) = buffer(i1,i3,i2,i4)
enddo
enddo
enddo
enddo
!$OMP END PARALLEL DO
deallocate(buffer)
else
call gen_v_space(cc_nOa,cc_nOa,cc_nOa,cc_nOa, cc_list_occ,cc_list_occ,cc_list_occ,cc_list_occ, cc_space_v_oooo)
endif
END_PROVIDER
! vooo
BEGIN_PROVIDER [double precision, cc_space_v_vooo, (cc_nVa, cc_nOa, cc_nOa, cc_nOa)]
use gpu_module
implicit none
if (do_ao_cholesky) then
integer :: i1, i2, i3, i4
integer :: n1, n2, n3, n4
n1 = size(cc_space_v_vooo,1)
n2 = size(cc_space_v_vooo,2)
n3 = size(cc_space_v_vooo,3)
n4 = size(cc_space_v_vooo,4)
double precision, allocatable :: buffer(:,:,:,:)
allocate(buffer(n1,n3,n2,n4))
call gpu_dgemm('T','N', n1*n3, n2*n4, cholesky_mo_num, 1.d0, &
cc_space_v_vo_chol, cholesky_mo_num, &
cc_space_v_oo_chol, cholesky_mo_num, 0.d0, buffer, n1*n3)
!$OMP PARALLEL DO PRIVATE(i1,i2,i3,i4) COLLAPSE(2)
do i4 = 1, n4
do i3 = 1, n3
do i2 = 1, n2
do i1 = 1, n1
cc_space_v_vooo(i1,i2,i3,i4) = buffer(i1,i3,i2,i4)
enddo
enddo
enddo
enddo
!$OMP END PARALLEL DO
deallocate(buffer)
else
call gen_v_space(cc_nVa,cc_nOa,cc_nOa,cc_nOa, cc_list_vir,cc_list_occ,cc_list_occ,cc_list_occ, cc_space_v_vooo)
endif
END_PROVIDER
! ovoo
BEGIN_PROVIDER [double precision, cc_space_v_ovoo, (cc_nOa, cc_nVa, cc_nOa, cc_nOa)]
implicit none
if (do_ao_cholesky) then
integer :: i1, i2, i3, i4
integer :: n1, n2, n3, n4
n1 = size(cc_space_v_ovoo,1)
n2 = size(cc_space_v_ovoo,2)
n3 = size(cc_space_v_ovoo,3)
n4 = size(cc_space_v_ovoo,4)
!$OMP PARALLEL DO PRIVATE(i1,i2,i3,i4) COLLAPSE(2)
do i4 = 1, n4
do i3 = 1, n3
do i2 = 1, n2
do i1 = 1, n1
cc_space_v_ovoo(i1,i2,i3,i4) = cc_space_v_vooo(i2,i1,i4,i3)
enddo
enddo
enddo
enddo
!$OMP END PARALLEL DO
else
call gen_v_space(cc_nOa,cc_nVa,cc_nOa,cc_nOa, cc_list_occ,cc_list_vir,cc_list_occ,cc_list_occ, cc_space_v_ovoo)
endif
END_PROVIDER
! oovo
BEGIN_PROVIDER [double precision, cc_space_v_oovo, (cc_nOa, cc_nOa, cc_nVa, cc_nOa)]
implicit none
if (do_ao_cholesky) then
integer :: i1, i2, i3, i4
integer :: n1, n2, n3, n4
n1 = size(cc_space_v_oovo,1)
n2 = size(cc_space_v_oovo,2)
n3 = size(cc_space_v_oovo,3)
n4 = size(cc_space_v_oovo,4)
!$OMP PARALLEL DO PRIVATE(i1,i2,i3,i4) COLLAPSE(2)
do i4 = 1, n4
do i3 = 1, n3
do i2 = 1, n2
do i1 = 1, n1
cc_space_v_oovo(i1,i2,i3,i4) = cc_space_v_vooo(i3,i2,i1,i4)
enddo
enddo
enddo
enddo
!$OMP END PARALLEL DO
else
call gen_v_space(cc_nOa,cc_nOa,cc_nVa,cc_nOa, cc_list_occ,cc_list_occ,cc_list_vir,cc_list_occ, cc_space_v_oovo)
endif
END_PROVIDER
! ooov
BEGIN_PROVIDER [double precision, cc_space_v_ooov, (cc_nOa, cc_nOa, cc_nOa, cc_nVa)]
implicit none
if (do_ao_cholesky) then
integer :: i1, i2, i3, i4
integer :: n1, n2, n3, n4
n1 = size(cc_space_v_oovo,1)
n2 = size(cc_space_v_oovo,2)
n3 = size(cc_space_v_oovo,3)
n4 = size(cc_space_v_oovo,4)
!$OMP PARALLEL DO PRIVATE(i1,i2,i3,i4) COLLAPSE(2)
do i4 = 1, n4
do i3 = 1, n3
do i2 = 1, n2
do i1 = 1, n1
cc_space_v_ooov(i1,i2,i3,i4) = cc_space_v_ovoo(i1,i4,i3,i2)
enddo
enddo
enddo
enddo
!$OMP END PARALLEL DO
else
call gen_v_space(cc_nOa,cc_nOa,cc_nOa,cc_nVa, cc_list_occ,cc_list_occ,cc_list_occ,cc_list_vir, cc_space_v_ooov)
endif
END_PROVIDER
! vvoo
BEGIN_PROVIDER [double precision, cc_space_v_vvoo, (cc_nVa, cc_nVa, cc_nOa, cc_nOa)]
use gpu_module
implicit none
if (do_ao_cholesky) then
integer :: i1, i2, i3, i4
integer :: n1, n2, n3, n4
n1 = size(cc_space_v_vvoo,1)
n2 = size(cc_space_v_vvoo,2)
n3 = size(cc_space_v_vvoo,3)
n4 = size(cc_space_v_vvoo,4)
double precision, allocatable :: buffer(:,:,:,:)
allocate(buffer(n1,n3,n2,n4))
call gpu_dgemm('T','N', n1*n3, n2*n4, cholesky_mo_num, 1.d0, &
cc_space_v_vo_chol, cholesky_mo_num, &
cc_space_v_vo_chol, cholesky_mo_num, 0.d0, buffer, n1*n3)
!$OMP PARALLEL DO PRIVATE(i1,i2,i3,i4) COLLAPSE(2)
do i4 = 1, n4
do i3 = 1, n3
do i2 = 1, n2
do i1 = 1, n1
cc_space_v_vvoo(i1,i2,i3,i4) = buffer(i1,i3,i2,i4)
enddo
enddo
enddo
enddo
!$OMP END PARALLEL DO
deallocate(buffer)
else
call gen_v_space(cc_nVa,cc_nVa,cc_nOa,cc_nOa, cc_list_vir,cc_list_vir,cc_list_occ,cc_list_occ, cc_space_v_vvoo)
endif
END_PROVIDER
! vovo
BEGIN_PROVIDER [double precision, cc_space_v_vovo, (cc_nVa, cc_nOa, cc_nVa, cc_nOa)]
use gpu_module
implicit none
if (do_ao_cholesky) then
integer :: i1, i2, i3, i4
integer :: n1, n2, n3, n4
n1 = size(cc_space_v_vovo,1)
n2 = size(cc_space_v_vovo,2)
n3 = size(cc_space_v_vovo,3)
n4 = size(cc_space_v_vovo,4)
double precision, allocatable :: buffer(:,:,:,:)
allocate(buffer(n1,n3,n2,n4))
call gpu_dgemm('T','N', n1*n3, n2*n4, cholesky_mo_num, 1.d0, &
cc_space_v_vv_chol, cholesky_mo_num, &
cc_space_v_oo_chol, cholesky_mo_num, 0.d0, buffer, n1*n3)
!$OMP PARALLEL DO PRIVATE(i1,i2,i3,i4) COLLAPSE(2)
do i4 = 1, n4
do i3 = 1, n3
do i2 = 1, n2
do i1 = 1, n1
cc_space_v_vovo(i1,i2,i3,i4) = buffer(i1,i3,i2,i4)
enddo
enddo
enddo
enddo
!$OMP END PARALLEL DO
deallocate(buffer)
else
call gen_v_space(cc_nVa,cc_nOa,cc_nVa,cc_nOa, cc_list_vir,cc_list_occ,cc_list_vir,cc_list_occ, cc_space_v_vovo)
endif
END_PROVIDER
! voov
BEGIN_PROVIDER [double precision, cc_space_v_voov, (cc_nVa, cc_nOa, cc_nOa, cc_nVa)]
implicit none
if (do_ao_cholesky) then
integer :: i1, i2, i3, i4
integer :: n1, n2, n3, n4
n1 = size(cc_space_v_voov,1)
n2 = size(cc_space_v_voov,2)
n3 = size(cc_space_v_voov,3)
n4 = size(cc_space_v_voov,4)
!$OMP PARALLEL DO PRIVATE(i1,i2,i3,i4) COLLAPSE(2)
do i4 = 1, n4
do i3 = 1, n3
do i2 = 1, n2
do i1 = 1, n1
cc_space_v_voov(i1,i2,i3,i4) = cc_space_v_vvoo(i1,i4,i3,i2)
enddo
enddo
enddo
enddo
!$OMP END PARALLEL DO
else
call gen_v_space(cc_nVa,cc_nOa,cc_nOa,cc_nVa, cc_list_vir,cc_list_occ,cc_list_occ,cc_list_vir, cc_space_v_voov)
endif
END_PROVIDER
! ovvo
BEGIN_PROVIDER [double precision, cc_space_v_ovvo, (cc_nOa, cc_nVa, cc_nVa, cc_nOa)]
implicit none
if (do_ao_cholesky) then
integer :: i1, i2, i3, i4
integer :: n1, n2, n3, n4
n1 = size(cc_space_v_ovvo,1)
n2 = size(cc_space_v_ovvo,2)
n3 = size(cc_space_v_ovvo,3)
n4 = size(cc_space_v_ovvo,4)
!$OMP PARALLEL DO PRIVATE(i1,i2,i3,i4) COLLAPSE(2)
do i4 = 1, n4
do i3 = 1, n3
do i2 = 1, n2
do i1 = 1, n1
cc_space_v_ovvo(i1,i2,i3,i4) = cc_space_v_vvoo(i3,i2,i1,i4)
enddo
enddo
enddo
enddo
!$OMP END PARALLEL DO
else
call gen_v_space(cc_nOa,cc_nVa,cc_nVa,cc_nOa, cc_list_occ,cc_list_vir,cc_list_vir,cc_list_occ, cc_space_v_ovvo)
endif
END_PROVIDER
! ovov
BEGIN_PROVIDER [double precision, cc_space_v_ovov, (cc_nOa, cc_nVa, cc_nOa, cc_nVa)]
implicit none
if (do_ao_cholesky) then
integer :: i1, i2, i3, i4
integer :: n1, n2, n3, n4
n1 = size(cc_space_v_ovov,1)
n2 = size(cc_space_v_ovov,2)
n3 = size(cc_space_v_ovov,3)
n4 = size(cc_space_v_ovov,4)
!$OMP PARALLEL DO PRIVATE(i1,i2,i3,i4) COLLAPSE(2)
do i4 = 1, n4
do i3 = 1, n3
do i2 = 1, n2
do i1 = 1, n1
cc_space_v_ovov(i1,i2,i3,i4) = cc_space_v_vovo(i2,i1,i4,i3)
enddo
enddo
enddo
enddo
!$OMP END PARALLEL DO
else
call gen_v_space(cc_nOa,cc_nVa,cc_nOa,cc_nVa, cc_list_occ,cc_list_vir,cc_list_occ,cc_list_vir, cc_space_v_ovov)
endif
END_PROVIDER
! oovv
BEGIN_PROVIDER [double precision, cc_space_v_oovv, (cc_nOa, cc_nOa, cc_nVa, cc_nVa)]
implicit none
if (do_ao_cholesky) then
integer :: i1, i2, i3, i4
integer :: n1, n2, n3, n4
n1 = size(cc_space_v_oovv,1)
n2 = size(cc_space_v_oovv,2)
n3 = size(cc_space_v_oovv,3)
n4 = size(cc_space_v_oovv,4)
!$OMP PARALLEL DO PRIVATE(i1,i2,i3,i4) COLLAPSE(2)
do i4 = 1, n4
do i3 = 1, n3
do i2 = 1, n2
do i1 = 1, n1
cc_space_v_oovv(i1,i2,i3,i4) = cc_space_v_vvoo(i3,i4,i1,i2)
enddo
enddo
enddo
enddo
!$OMP END PARALLEL DO
else
call gen_v_space(cc_nOa,cc_nOa,cc_nVa,cc_nVa, cc_list_occ,cc_list_occ,cc_list_vir,cc_list_vir, cc_space_v_oovv)
endif
END_PROVIDER
! vvvo
BEGIN_PROVIDER [double precision, cc_space_v_vvvo, (cc_nVa, cc_nVa, cc_nVa, cc_nOa)]
implicit none
call gen_v_space(cc_nVa,cc_nVa,cc_nVa,cc_nOa, cc_list_vir,cc_list_vir,cc_list_vir,cc_list_occ, cc_space_v_vvvo)
END_PROVIDER
! vvov
BEGIN_PROVIDER [double precision, cc_space_v_vvov, (cc_nVa, cc_nVa, cc_nOa, cc_nVa)]
implicit none
call gen_v_space(cc_nVa,cc_nVa,cc_nOa,cc_nVa, cc_list_vir,cc_list_vir,cc_list_occ,cc_list_vir, cc_space_v_vvov)
END_PROVIDER
! vovv
BEGIN_PROVIDER [double precision, cc_space_v_vovv, (cc_nVa, cc_nOa, cc_nVa, cc_nVa)]
implicit none
call gen_v_space(cc_nVa,cc_nOa,cc_nVa,cc_nVa, cc_list_vir,cc_list_occ,cc_list_vir,cc_list_vir, cc_space_v_vovv)
END_PROVIDER
! ovvv
BEGIN_PROVIDER [double precision, cc_space_v_ovvv, (cc_nOa, cc_nVa, cc_nVa, cc_nVa)]
implicit none
call gen_v_space(cc_nOa,cc_nVa,cc_nVa,cc_nVa, cc_list_occ,cc_list_vir,cc_list_vir,cc_list_vir, cc_space_v_ovvv)
END_PROVIDER
! vvvv
BEGIN_PROVIDER [double precision, cc_space_v_vvvv, (cc_nVa, cc_nVa, cc_nVa, cc_nVa)]
implicit none
call gen_v_space(cc_nVa,cc_nVa,cc_nVa,cc_nVa, cc_list_vir,cc_list_vir,cc_list_vir,cc_list_vir, cc_space_v_vvvv)
END_PROVIDER
BEGIN_PROVIDER [double precision, cc_space_v_vv_chol, (cholesky_mo_num, cc_nVa, cc_nVa)]
implicit none
call gen_v_space_chol(cc_nVa, cc_nVa, cc_list_vir, cc_list_vir, cc_space_v_vv_chol, cholesky_mo_num)
END_PROVIDER
BEGIN_PROVIDER [double precision, cc_space_v_vo_chol, (cholesky_mo_num, cc_nVa, cc_nOa)]
implicit none
call gen_v_space_chol(cc_nVa, cc_nOa, cc_list_vir, cc_list_occ, cc_space_v_vo_chol, cholesky_mo_num)
END_PROVIDER
BEGIN_PROVIDER [double precision, cc_space_v_ov_chol, (cholesky_mo_num, cc_nOa, cc_nVa)]
implicit none
call gen_v_space_chol(cc_nOa, cc_nVa, cc_list_occ, cc_list_vir, cc_space_v_ov_chol, cholesky_mo_num)
END_PROVIDER
BEGIN_PROVIDER [double precision, cc_space_v_oo_chol, (cholesky_mo_num, cc_nOa, cc_nOa)]
implicit none
call gen_v_space_chol(cc_nOa, cc_nOa, cc_list_occ, cc_list_occ, cc_space_v_oo_chol, cholesky_mo_num)
END_PROVIDER
! ppqq
BEGIN_PROVIDER [double precision, cc_space_v_ppqq, (cc_n_mo, cc_n_mo)]
implicit none
BEGIN_DOC
! <pp|qq> integrals for general MOs (excepted core and deleted ones)
END_DOC
integer :: p,q
double precision, allocatable :: tmp_v(:,:,:,:)
allocate(tmp_v(cc_n_mo,cc_n_mo,cc_n_mo,cc_n_mo))
call gen_v_space(cc_n_mo,cc_n_mo,cc_n_mo,cc_n_mo, cc_list_gen,cc_list_gen,cc_list_gen,cc_list_gen, tmp_v)
do q = 1, cc_n_mo
do p = 1, cc_n_mo
cc_space_v_ppqq(p,q) = tmp_v(p,p,q,q)
enddo
enddo
deallocate(tmp_v)
END_PROVIDER
! aaii
BEGIN_PROVIDER [double precision, cc_space_v_aaii, (cc_nVa,cc_nOa)]
implicit none
BEGIN_DOC
! <aa|ii> integrals
! a: virtual MO
! i: occupied MO
END_DOC
integer :: a,i
do i = 1, cc_nOa
do a = 1, cc_nVa
cc_space_v_aaii(a,i) = cc_space_v_vvoo(a,a,i,i)
enddo
enddo
FREE cc_space_v_vvoo
END_PROVIDER
! iiaa
BEGIN_PROVIDER [double precision, cc_space_v_iiaa, (cc_nOa,cc_nVa)]
implicit none
BEGIN_DOC
! <ii|aa> integrals
! a: virtual MO
! i: occupied MO
END_DOC
integer :: a,i
do a = 1, cc_nVa
do i = 1, cc_nOa
cc_space_v_iiaa(i,a) = cc_space_v_oovv(i,i,a,a)
enddo
enddo
FREE cc_space_v_oovv
END_PROVIDER
! iijj
BEGIN_PROVIDER [double precision, cc_space_v_iijj, (cc_nOa,cc_nOa)]
implicit none
BEGIN_DOC
! <ii|jj> integrals
! i,j: occupied MO
END_DOC
integer :: i,j
do j = 1, cc_nOa
do i = 1, cc_nOa
cc_space_v_iijj(i,j) = cc_space_v_oooo(i,i,j,j)
enddo
enddo
FREE cc_space_v_oooo
END_PROVIDER
! aabb
BEGIN_PROVIDER [double precision, cc_space_v_aabb, (cc_nVa,cc_nVa)]
implicit none
BEGIN_DOC
! <aa|bb> integrals
! a,b: virtual MO
END_DOC
integer :: a,b
do b = 1, cc_nVa
do a = 1, cc_nVa
cc_space_v_aabb(a,b) = cc_space_v_vvvv(a,a,b,b)
enddo
enddo
FREE cc_space_v_vvvv
END_PROVIDER
! iaia
BEGIN_PROVIDER [double precision, cc_space_v_iaia, (cc_nOa,cc_nVa)]
implicit none
BEGIN_DOC
! <ia|ia> integrals
! a: virtual MO
! i: occupied MO
END_DOC
integer :: a,i
do a = 1, cc_nVa
do i = 1, cc_nOa
cc_space_v_iaia(i,a) = cc_space_v_ovov(i,a,i,a)
enddo
enddo
FREE cc_space_v_ovov
END_PROVIDER
! iaai
BEGIN_PROVIDER [double precision, cc_space_v_iaai, (cc_nOa,cc_nVa)]
implicit none
BEGIN_DOC
! <ia|ai> integrals
! a: virtual MO
! i: inactive MO
END_DOC
integer :: a,i
do a = 1, cc_nVa
do i = 1, cc_nOa
cc_space_v_iaai(i,a) = cc_space_v_ovvo(i,a,a,i)
enddo
enddo
FREE cc_space_v_ovvo
END_PROVIDER
! aiia
BEGIN_PROVIDER [double precision, cc_space_v_aiia, (cc_nVa,cc_nOa)]
implicit none
BEGIN_DOC
! <ai|ia> integrals
! a: virtual MO
! i: inactive MO
END_DOC
integer :: a,i
do i = 1, cc_nOa
do a = 1, cc_nVa
cc_space_v_aiia(a,i) = cc_space_v_voov(a,i,i,a)
enddo
enddo
FREE cc_space_v_voov
END_PROVIDER
! oovv
BEGIN_PROVIDER [double precision, cc_space_w_oovv, (cc_nOa, cc_nOa, cc_nVa, cc_nVa)]
implicit none
double precision, allocatable :: tmp_v(:,:,:,:)
integer :: i,j,a,b
allocate(tmp_v(cc_nOa,cc_nOa,cc_nVa,cc_nVa))
call gen_v_space(cc_nOa,cc_nOa,cc_nVa,cc_nVa, cc_list_occ,cc_list_occ,cc_list_vir,cc_list_vir, tmp_v)
!$OMP PARALLEL &
!$OMP SHARED(cc_nVa,cc_nOa,tmp_v,cc_space_w_oovv) &
!$OMP PRIVATE(i,j,a,b)&
!$OMP DEFAULT(NONE)
!$OMP DO
do b = 1, cc_nVa
do a = 1, cc_nVa
do j = 1, cc_nOa
do i = 1, cc_nOa
cc_space_w_oovv(i,j,a,b) = 2d0 * tmp_v(i,j,a,b) - tmp_v(j,i,a,b)
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
deallocate(tmp_v)
END_PROVIDER
! vvoo
BEGIN_PROVIDER [double precision, cc_space_w_vvoo, (cc_nVa, cc_nVa, cc_nOa, cc_nOa)]
implicit none
double precision, allocatable :: tmp_v(:,:,:,:)
integer :: i,j,a,b
allocate(tmp_v(cc_nVa,cc_nVa,cc_nOa,cc_nOa))
call gen_v_space(cc_nVa,cc_nVa,cc_nOa,cc_nOa, cc_list_vir,cc_list_vir,cc_list_occ,cc_list_occ, tmp_v)
!$OMP PARALLEL &
!$OMP SHARED(cc_nVa,cc_nOa,tmp_v,cc_space_w_vvoo) &
!$OMP PRIVATE(i,j,a,b)&
!$OMP DEFAULT(NONE)
!$OMP DO
do j = 1, cc_nOa
do i = 1, cc_nOa
do b = 1, cc_nVa
do a = 1, cc_nVa
cc_space_w_vvoo(a,b,i,j) = 2d0 * tmp_v(a,b,i,j) - tmp_v(b,a,i,j)
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
deallocate(tmp_v)
END_PROVIDER
! F_oo
BEGIN_PROVIDER [double precision, cc_space_f_oo, (cc_nOa, cc_nOa)]
implicit none
call gen_f_space(psi_det(1,1,cc_ref), cc_nOa,cc_nOa, cc_list_occ,cc_list_occ, cc_space_f_oo)
END_PROVIDER
! F_ov
BEGIN_PROVIDER [double precision, cc_space_f_ov, (cc_nOa, cc_nVa)]
implicit none
call gen_f_space(psi_det(1,1,cc_ref), cc_nOa,cc_nVa, cc_list_occ,cc_list_vir, cc_space_f_ov)
END_PROVIDER
! F_vo
BEGIN_PROVIDER [double precision, cc_space_f_vo, (cc_nVa, cc_nOa)]
implicit none
call gen_f_space(psi_det(1,1,cc_ref), cc_nVa,cc_nOa, cc_list_vir,cc_list_occ, cc_space_f_vo)
END_PROVIDER
! F_vv
BEGIN_PROVIDER [double precision, cc_space_f_vv, (cc_nVa, cc_nVa)]
implicit none
call gen_f_space(psi_det(1,1,cc_ref), cc_nVa,cc_nVa, cc_list_vir,cc_list_vir, cc_space_f_vv)
END_PROVIDER
! F_o
BEGIN_PROVIDER [double precision, cc_space_f_o, (cc_nOa)]
implicit none
integer :: i
do i = 1, cc_nOa
cc_space_f_o(i) = cc_space_f_oo(i,i)
enddo
END_PROVIDER
! F_v
BEGIN_PROVIDER [double precision, cc_space_f_v, (cc_nVa)]
implicit none
integer :: i
do i = 1, cc_nVa
cc_space_f_v(i) = cc_space_f_vv(i,i)
enddo
END_PROVIDER
! Shift
subroutine shift_idx_spin(s,n_S,shift)
implicit none
BEGIN_DOC
! Shift for the partitionning alpha/beta of the spin orbitals
! n_S(1): number of spin alpha in the correspondong list
! n_S(2): number of spin beta in the correspondong list
END_DOC
integer, intent(in) :: s, n_S(2)
integer, intent(out) :: shift
if (s == 1) then
shift = 0
else
shift = n_S(1)
endif
end
! F
subroutine gen_f_spin(det, n1,n2, n1_S,n2_S, list1,list2, dim1,dim2, f)
implicit none
BEGIN_DOC
! Compute the Fock matrix corresponding to two lists of spin orbitals.
! Ex: occ/occ, occ/vir,...
END_DOC
integer(bit_kind), intent(in) :: det(N_int,2)
integer, intent(in) :: n1,n2, n1_S(2), n2_S(2)
integer, intent(in) :: list1(n1,2), list2(n2,2)
integer, intent(in) :: dim1, dim2
double precision, intent(out) :: f(dim1, dim2)
double precision, allocatable :: tmp_F(:,:)
integer :: i,j, idx_i,idx_j,i_shift,j_shift
integer :: tmp_i,tmp_j
integer :: si,sj,s
PROVIDE big_array_exchange_integrals big_array_coulomb_integrals
allocate(tmp_F(mo_num,mo_num))
do sj = 1, 2
call shift_idx_spin(sj,n2_S,j_shift)
do si = 1, 2
call shift_idx_spin(si,n1_S,i_shift)
s = si + sj
if (s == 2 .or. s == 4) then
call get_fock_matrix_spin(det,sj,tmp_F)
else
do j = 1, mo_num
do i = 1, mo_num
tmp_F(i,j) = 0d0
enddo
enddo
endif
do tmp_j = 1, n2_S(sj)
j = list2(tmp_j,sj)
idx_j = tmp_j + j_shift
do tmp_i = 1, n1_S(si)
i = list1(tmp_i,si)
idx_i = tmp_i + i_shift
f(idx_i,idx_j) = tmp_F(i,j)
enddo
enddo
enddo
enddo
deallocate(tmp_F)
end
! Get F
subroutine get_fock_matrix_spin(det,s,f)
implicit none
BEGIN_DOC
! Fock matrix alpha or beta of an arbitrary det
END_DOC
integer(bit_kind), intent(in) :: det(N_int,2)
integer, intent(in) :: s
double precision, intent(out) :: f(mo_num,mo_num)
integer :: p,q,i,s1,s2
integer(bit_kind) :: res(N_int,2)
logical :: ok
double precision :: mo_two_e_integral
if (s == 1) then
s1 = 1
s2 = 2
else
s1 = 2
s2 = 1
endif
PROVIDE big_array_coulomb_integrals big_array_exchange_integrals
!$OMP PARALLEL &
!$OMP SHARED(f,mo_num,s1,s2,N_int,det,mo_one_e_integrals,big_array_coulomb_integrals,big_array_exchange_integrals) &
!$OMP PRIVATE(p,q,ok,i,res)&
!$OMP DEFAULT(NONE)
!$OMP DO collapse(1)
do q = 1, mo_num
do p = 1, mo_num
f(p,q) = mo_one_e_integrals(p,q)
do i = 1, mo_num
call apply_hole(det, s1, i, res, ok, N_int)
if (ok) then
! f(p,q) = f(p,q) + mo_two_e_integral(p,i,q,i) - mo_two_e_integral(p,i,i,q)
f(p,q) = f(p,q) + big_array_coulomb_integrals(i,p,q) - big_array_exchange_integrals(i,p,q)
endif
enddo
do i = 1, mo_num
call apply_hole(det, s2, i, res, ok, N_int)
if (ok) then
f(p,q) = f(p,q) + big_array_coulomb_integrals(i,p,q)
endif
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
end
! V
subroutine gen_v_spin(n1,n2,n3,n4, n1_S,n2_S,n3_S,n4_S, list1,list2,list3,list4, dim1,dim2,dim3,dim4, v)
implicit none
BEGIN_DOC
! Compute the bi electronic integrals corresponding to four lists of spin orbitals.
! Ex: occ/occ/occ/occ, occ/vir/occ/vir, ...
END_DOC
integer, intent(in) :: n1,n2,n3,n4,n1_S(2),n2_S(2),n3_S(2),n4_S(2)
integer, intent(in) :: list1(n1,2), list2(n2,2), list3(n3,2), list4(n4,2)
integer, intent(in) :: dim1, dim2, dim3, dim4
double precision, intent(out) :: v(dim1,dim2,dim3,dim4)
double precision :: mo_two_e_integral
integer :: i,j,k,l,idx_i,idx_j,idx_k,idx_l
integer :: i_shift,j_shift,k_shift,l_shift
integer :: tmp_i,tmp_j,tmp_k,tmp_l
integer :: si,sj,sk,sl,s
PROVIDE cc_space_v
!$OMP PARALLEL &
!$OMP SHARED(cc_space_v,n1_S,n2_S,n3_S,n4_S,list1,list2,list3,list4,v) &
!$OMP PRIVATE(s,si,sj,sk,sl,i_shift,j_shift,k_shift,l_shift, &
!$OMP i,j,k,l,idx_i,idx_j,idx_k,idx_l,&
!$OMP tmp_i,tmp_j,tmp_k,tmp_l)&
!$OMP DEFAULT(NONE)
do sl = 1, 2
call shift_idx_spin(sl,n4_S,l_shift)
do sk = 1, 2
call shift_idx_spin(sk,n3_S,k_shift)
do sj = 1, 2
call shift_idx_spin(sj,n2_S,j_shift)
do si = 1, 2
call shift_idx_spin(si,n1_S,i_shift)
s = si+sj+sk+sl
! <aa||aa> or <bb||bb>
if (s == 4 .or. s == 8) then
!$OMP DO collapse(3)
do tmp_l = 1, n4_S(sl)
do tmp_k = 1, n3_S(sk)
do tmp_j = 1, n2_S(sj)
do tmp_i = 1, n1_S(si)
l = list4(tmp_l,sl)
idx_l = tmp_l + l_shift
k = list3(tmp_k,sk)
idx_k = tmp_k + k_shift
j = list2(tmp_j,sj)
idx_j = tmp_j + j_shift
i = list1(tmp_i,si)
idx_i = tmp_i + i_shift
!v(idx_i,idx_j,idx_k,idx_l) = mo_two_e_integral(i,j,k,l) - mo_two_e_integral(j,i,k,l)
v(idx_i,idx_j,idx_k,idx_l) = cc_space_v(i,j,k,l) - cc_space_v(j,i,k,l)
enddo
enddo
enddo
enddo
!$OMP END DO
! <ab||ab> or <ba||ba>
elseif (si == sk .and. sj == sl) then
!$OMP DO collapse(3)
do tmp_l = 1, n4_S(sl)
do tmp_k = 1, n3_S(sk)
do tmp_j = 1, n2_S(sj)
do tmp_i = 1, n1_S(si)
l = list4(tmp_l,sl)
idx_l = tmp_l + l_shift
k = list3(tmp_k,sk)
idx_k = tmp_k + k_shift
j = list2(tmp_j,sj)
idx_j = tmp_j + j_shift
i = list1(tmp_i,si)
idx_i = tmp_i + i_shift
!v(idx_i,idx_j,idx_k,idx_l) = mo_two_e_integral(i,j,k,l)
v(idx_i,idx_j,idx_k,idx_l) = cc_space_v(i,j,k,l)
enddo
enddo
enddo
enddo
!$OMP END DO
! <ab||ba> or <ba||ab>
elseif (si == sl .and. sj == sk) then
!$OMP DO collapse(3)
do tmp_l = 1, n4_S(sl)
do tmp_k = 1, n3_S(sk)
do tmp_j = 1, n2_S(sj)
do tmp_i = 1, n1_S(si)
l = list4(tmp_l,sl)
idx_l = tmp_l + l_shift
k = list3(tmp_k,sk)
idx_k = tmp_k + k_shift
j = list2(tmp_j,sj)
idx_j = tmp_j + j_shift
i = list1(tmp_i,si)
idx_i = tmp_i + i_shift
!v(idx_i,idx_j,idx_k,idx_l) = - mo_two_e_integral(j,i,k,l)
v(idx_i,idx_j,idx_k,idx_l) = - cc_space_v(j,i,k,l)
enddo
enddo
enddo
enddo
!$OMP END DO
else
!$OMP DO collapse(3)
do tmp_l = 1, n4_S(sl)
do tmp_k = 1, n3_S(sk)
do tmp_j = 1, n2_S(sj)
do tmp_i = 1, n1_S(si)
l = list4(tmp_l,sl)
idx_l = tmp_l + l_shift
k = list3(tmp_k,sk)
idx_k = tmp_k + k_shift
j = list2(tmp_j,sj)
idx_j = tmp_j + j_shift
i = list1(tmp_i,si)
idx_i = tmp_i + i_shift
v(idx_i,idx_j,idx_k,idx_l) = 0d0
enddo
enddo
enddo
enddo
!$OMP END DO
endif
enddo
enddo
enddo
enddo
!$OMP END PARALLEL
end
! V_3idx
subroutine gen_v_spin_3idx(n1,n2,n3,n4, idx_l, n1_S,n2_S,n3_S,n4_S, list1,list2,list3,list4, dim1,dim2,dim3, v_l)
implicit none
BEGIN_DOC
! Compute the bi electronic integrals corresponding to four lists of spin orbitals.
! Ex: occ/occ/occ/occ, occ/vir/occ/vir, ...
END_DOC
integer, intent(in) :: n1,n2,n3,n4,idx_l,n1_S(2),n2_S(2),n3_S(2),n4_S(2)
integer, intent(in) :: list1(n1,2), list2(n2,2), list3(n3,2), list4(n4,2)
integer, intent(in) :: dim1, dim2, dim3
double precision, intent(out) :: v_l(dim1,dim2,dim3)
double precision :: mo_two_e_integral
integer :: i,j,k,l,idx_i,idx_j,idx_k
integer :: i_shift,j_shift,k_shift,l_shift
integer :: tmp_i,tmp_j,tmp_k,tmp_l
integer :: si,sj,sk,sl,s
PROVIDE cc_space_v
if (idx_l <= n4_S(1)) then
sl = 1
else
sl = 2
endif
call shift_idx_spin(sl,n4_S,l_shift)
tmp_l = idx_l - l_shift
l = list4(tmp_l,sl)
!$OMP PARALLEL &
!$OMP SHARED(l,sl,idx_l,cc_space_v,n1_S,n2_S,n3_S,n4_S,list1,list2,list3,list4,v_l) &
!$OMP PRIVATE(s,si,sj,sk,i_shift,j_shift,k_shift, &
!$OMP i,j,k,idx_i,idx_j,idx_k,&
!$OMP tmp_i,tmp_j,tmp_k)&
!$OMP DEFAULT(NONE)
do sk = 1, 2
call shift_idx_spin(sk,n3_S,k_shift)
do sj = 1, 2
call shift_idx_spin(sj,n2_S,j_shift)
do si = 1, 2
call shift_idx_spin(si,n1_S,i_shift)
s = si+sj+sk+sl
! <aa||aa> or <bb||bb>
if (s == 4 .or. s == 8) then
!$OMP DO collapse(2)
do tmp_k = 1, n3_S(sk)
do tmp_j = 1, n2_S(sj)
do tmp_i = 1, n1_S(si)
k = list3(tmp_k,sk)
idx_k = tmp_k + k_shift
j = list2(tmp_j,sj)
idx_j = tmp_j + j_shift
i = list1(tmp_i,si)
idx_i = tmp_i + i_shift
!v(idx_i,idx_j,idx_k,idx_l) = mo_two_e_integral(i,j,k,l) - mo_two_e_integral(j,i,k,l)
v_l(idx_i,idx_j,idx_k) = cc_space_v(i,j,k,l) - cc_space_v(j,i,k,l)
enddo
enddo
enddo
!$OMP END DO
! <ab||ab> or <ba||ba>
elseif (si == sk .and. sj == sl) then
!$OMP DO collapse(2)
do tmp_k = 1, n3_S(sk)
do tmp_j = 1, n2_S(sj)
do tmp_i = 1, n1_S(si)
k = list3(tmp_k,sk)
idx_k = tmp_k + k_shift
j = list2(tmp_j,sj)
idx_j = tmp_j + j_shift
i = list1(tmp_i,si)
idx_i = tmp_i + i_shift
!v(idx_i,idx_j,idx_k,idx_l) = mo_two_e_integral(i,j,k,l)
v_l(idx_i,idx_j,idx_k) = cc_space_v(i,j,k,l)
enddo
enddo
enddo
!$OMP END DO
! <ab||ba> or <ba||ab>
elseif (si == sl .and. sj == sk) then
!$OMP DO collapse(2)
do tmp_k = 1, n3_S(sk)
do tmp_j = 1, n2_S(sj)
do tmp_i = 1, n1_S(si)
k = list3(tmp_k,sk)
idx_k = tmp_k + k_shift
j = list2(tmp_j,sj)
idx_j = tmp_j + j_shift
i = list1(tmp_i,si)
idx_i = tmp_i + i_shift
!v(idx_i,idx_j,idx_k,idx_l) = - mo_two_e_integral(j,i,k,l)
v_l(idx_i,idx_j,idx_k) = - cc_space_v(j,i,k,l)
enddo
enddo
enddo
!$OMP END DO
else
!$OMP DO collapse(2)
do tmp_k = 1, n3_S(sk)
do tmp_j = 1, n2_S(sj)
do tmp_i = 1, n1_S(si)
k = list3(tmp_k,sk)
idx_k = tmp_k + k_shift
j = list2(tmp_j,sj)
idx_j = tmp_j + j_shift
i = list1(tmp_i,si)
idx_i = tmp_i + i_shift
v_l(idx_i,idx_j,idx_k) = 0d0
enddo
enddo
enddo
!$OMP END DO
endif
enddo
enddo
enddo
!$OMP END PARALLEL
end
! V_3idx_ij_l
subroutine gen_v_spin_3idx_ij_l(n1,n2,n3,n4, idx_k, n1_S,n2_S,n3_S,n4_S, list1,list2,list3,list4, dim1,dim2,dim3, v_k)
implicit none
BEGIN_DOC
! Compute the bi electronic integrals corresponding to four lists of spin orbitals.
! Ex: occ/occ/occ/occ, occ/vir/occ/vir, ...
END_DOC
integer, intent(in) :: n1,n2,n3,n4,idx_k,n1_S(2),n2_S(2),n3_S(2),n4_S(2)
integer, intent(in) :: list1(n1,2), list2(n2,2), list3(n3,2), list4(n4,2)
integer, intent(in) :: dim1, dim2, dim3
double precision, intent(out) :: v_k(dim1,dim2,dim3)
double precision :: mo_two_e_integral
integer :: i,j,k,l,idx_i,idx_j,idx_l
integer :: i_shift,j_shift,k_shift,l_shift
integer :: tmp_i,tmp_j,tmp_k,tmp_l
integer :: si,sj,sk,sl,s
PROVIDE cc_space_v
if (idx_k <= n3_S(1)) then
sk = 1
else
sk = 2
endif
call shift_idx_spin(sk,n3_S,k_shift)
tmp_k = idx_k - k_shift
k = list3(tmp_k,sk)
!$OMP PARALLEL &
!$OMP SHARED(k,sk,idx_k,cc_space_v,n1_S,n2_S,n3_S,n4_S,list1,list2,list3,list4,v_k) &
!$OMP PRIVATE(s,si,sj,sl,i_shift,j_shift,l_shift, &
!$OMP i,j,l,idx_i,idx_j,idx_l,&
!$OMP tmp_i,tmp_j,tmp_l)&
!$OMP DEFAULT(NONE)
do sl = 1, 2
call shift_idx_spin(sl,n4_S,l_shift)
do sj = 1, 2
call shift_idx_spin(sj,n2_S,j_shift)
do si = 1, 2
call shift_idx_spin(si,n1_S,i_shift)
s = si+sj+sk+sl
! <aa||aa> or <bb||bb>
if (s == 4 .or. s == 8) then
!$OMP DO collapse(2)
do tmp_l = 1, n4_S(sl)
do tmp_j = 1, n2_S(sj)
do tmp_i = 1, n1_S(si)
l = list4(tmp_l,sl)
idx_l = tmp_l + l_shift
j = list2(tmp_j,sj)
idx_j = tmp_j + j_shift
i = list1(tmp_i,si)
idx_i = tmp_i + i_shift
!v(idx_i,idx_j,idx_k,idx_l) = mo_two_e_integral(i,j,k,l) - mo_two_e_integral(j,i,k,l)
v_k(idx_i,idx_j,idx_l) = cc_space_v(i,j,k,l) - cc_space_v(j,i,k,l)
enddo
enddo
enddo
!$OMP END DO
! <ab||ab> or <ba||ba>
elseif (si == sk .and. sj == sl) then
!$OMP DO collapse(2)
do tmp_l = 1, n4_S(sl)
do tmp_j = 1, n2_S(sj)
do tmp_i = 1, n1_S(si)
l = list4(tmp_l,sl)
idx_l = tmp_l + l_shift
j = list2(tmp_j,sj)
idx_j = tmp_j + j_shift
i = list1(tmp_i,si)
idx_i = tmp_i + i_shift
!v(idx_i,idx_j,idx_k,idx_l) = mo_two_e_integral(i,j,k,l)
v_k(idx_i,idx_j,idx_l) = cc_space_v(i,j,k,l)
enddo
enddo
enddo
!$OMP END DO
! <ab||ba> or <ba||ab>
elseif (si == sl .and. sj == sk) then
!$OMP DO collapse(2)
do tmp_l = 1, n4_S(sl)
do tmp_j = 1, n2_S(sj)
do tmp_i = 1, n1_S(si)
l = list4(tmp_l,sl)
idx_l = tmp_l + l_shift
j = list2(tmp_j,sj)
idx_j = tmp_j + j_shift
i = list1(tmp_i,si)
idx_i = tmp_i + i_shift
!v(idx_i,idx_j,idx_k,idx_l) = - mo_two_e_integral(j,i,k,l)
v_k(idx_i,idx_j,idx_l) = - cc_space_v(j,i,k,l)
enddo
enddo
enddo
!$OMP END DO
else
!$OMP DO collapse(2)
do tmp_l = 1, n4_S(sl)
do tmp_j = 1, n2_S(sj)
do tmp_i = 1, n1_S(si)
l = list4(tmp_l,sl)
idx_l = tmp_l + l_shift
j = list2(tmp_j,sj)
idx_j = tmp_j + j_shift
i = list1(tmp_i,si)
idx_i = tmp_i + i_shift
v_k(idx_i,idx_j,idx_l) = 0d0
enddo
enddo
enddo
!$OMP END DO
endif
enddo
enddo
enddo
!$OMP END PARALLEL
end
! V_3idx_i_kl
subroutine gen_v_spin_3idx_i_kl(n1,n2,n3,n4, idx_j, n1_S,n2_S,n3_S,n4_S, list1,list2,list3,list4, dim1,dim2,dim3, v_j)
implicit none
BEGIN_DOC
! Compute the bi electronic integrals corresponding to four lists of spin orbitals.
! Ex: occ/occ/occ/occ, occ/vir/occ/vir, ...
END_DOC
integer, intent(in) :: n1,n2,n3,n4,idx_j,n1_S(2),n2_S(2),n3_S(2),n4_S(2)
integer, intent(in) :: list1(n1,2), list2(n2,2), list3(n3,2), list4(n4,2)
integer, intent(in) :: dim1, dim2, dim3
double precision, intent(out) :: v_j(dim1,dim2,dim3)
double precision :: mo_two_e_integral
integer :: i,j,k,l,idx_i,idx_k,idx_l
integer :: i_shift,j_shift,k_shift,l_shift
integer :: tmp_i,tmp_j,tmp_k,tmp_l
integer :: si,sj,sk,sl,s
PROVIDE cc_space_v
if (idx_j <= n2_S(1)) then
sj = 1
else
sj = 2
endif
call shift_idx_spin(sj,n2_S,j_shift)
tmp_j = idx_j - j_shift
j = list2(tmp_j,sj)
!$OMP PARALLEL &
!$OMP SHARED(j,sj,idx_j,cc_space_v,n1_S,n2_S,n3_S,n4_S,list1,list2,list3,list4,v_j) &
!$OMP PRIVATE(s,si,sk,sl,i_shift,l_shift,k_shift, &
!$OMP i,k,l,idx_i,idx_k,idx_l,&
!$OMP tmp_i,tmp_k,tmp_l)&
!$OMP DEFAULT(NONE)
do sl = 1, 2
call shift_idx_spin(sl,n4_S,l_shift)
do sk = 1, 2
call shift_idx_spin(sk,n3_S,k_shift)
do si = 1, 2
call shift_idx_spin(si,n1_S,i_shift)
s = si+sj+sk+sl
! <aa||aa> or <bb||bb>
if (s == 4 .or. s == 8) then
!$OMP DO collapse(2)
do tmp_l = 1, n4_S(sl)
do tmp_k = 1, n3_S(sk)
do tmp_i = 1, n1_S(si)
l = list4(tmp_l,sl)
idx_l = tmp_l + l_shift
k = list3(tmp_k,sk)
idx_k = tmp_k + k_shift
i = list1(tmp_i,si)
idx_i = tmp_i + i_shift
!v(idx_i,idx_j,idx_k,idx_l) = mo_two_e_integral(i,j,k,l) - mo_two_e_integral(j,i,k,l)
v_j(idx_i,idx_k,idx_l) = cc_space_v(i,j,k,l) - cc_space_v(j,i,k,l)
enddo
enddo
enddo
!$OMP END DO
! <ab||ab> or <ba||ba>
elseif (si == sk .and. sj == sl) then
!$OMP DO collapse(2)
do tmp_l = 1, n4_S(sl)
do tmp_k = 1, n3_S(sk)
do tmp_i = 1, n1_S(si)
l = list4(tmp_l,sl)
idx_l = tmp_l + l_shift
k = list3(tmp_k,sk)
idx_k = tmp_k + k_shift
i = list1(tmp_i,si)
idx_i = tmp_i + i_shift
!v(idx_i,idx_j,idx_k,idx_l) = mo_two_e_integral(i,j,k,l)
v_j(idx_i,idx_k,idx_l) = cc_space_v(i,j,k,l)
enddo
enddo
enddo
!$OMP END DO
! <ab||ba> or <ba||ab>
elseif (si == sl .and. sj == sk) then
!$OMP DO collapse(2)
do tmp_l = 1, n4_S(sl)
do tmp_k = 1, n3_S(sk)
do tmp_i = 1, n1_S(si)
l = list4(tmp_l,sl)
idx_l = tmp_l + l_shift
k = list3(tmp_k,sk)
idx_k = tmp_k + k_shift
i = list1(tmp_i,si)
idx_i = tmp_i + i_shift
!v(idx_i,idx_j,idx_k,idx_l) = - mo_two_e_integral(j,i,k,l)
v_j(idx_i,idx_k,idx_l) = - cc_space_v(j,i,k,l)
enddo
enddo
enddo
!$OMP END DO
else
!$OMP DO collapse(2)
do tmp_l = 1, n4_S(sl)
do tmp_k = 1, n3_S(sk)
do tmp_i = 1, n1_S(si)
l = list4(tmp_l,sl)
idx_l = tmp_l + l_shift
k = list3(tmp_k,sk)
idx_k = tmp_k + k_shift
i = list1(tmp_i,si)
idx_i = tmp_i + i_shift
v_j(idx_i,idx_k,idx_l) = 0d0
enddo
enddo
enddo
!$OMP END DO
endif
enddo
enddo
enddo
!$OMP END PARALLEL
end