1
0
mirror of https://gitlab.com/scemama/qp_plugins_scemama.git synced 2025-01-10 13:08:15 +01:00
qp_plugins_scemama/devel/svdwf/linear_algebra.irp.f

198 lines
5.6 KiB
FortranFixed
Raw Normal View History

2021-04-08 16:42:42 +02:00
subroutine svd_s(A, LDA, U, LDU, D, Vt, LDVt, m, n)
implicit none
BEGIN_DOC
! !!!
! DGESVD computes the singular value decomposition (SVD) of a real
! M-by-N matrix A, optionally computing the left and/or right singular
! vectors. The SVD is written:
! A = U * SIGMA * transpose(V)
! where SIGMA is an M-by-N matrix which is zero except for its
! min(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and
! V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA
! are the singular values of A; they are real and non-negative, and
! are returned in descending order. The first min(m,n) columns of
! U and V are the left and right singular vectors of A.
!
! Note that the routine returns V**T, not V.
! !!!
END_DOC
integer, intent(in) :: LDA, LDU, LDVt, m, n
double precision, intent(in) :: A(LDA,n)
2021-07-28 17:19:18 +02:00
double precision, intent(out) :: U(LDU,m), Vt(LDVt,n), D(min(m,n))
2021-04-08 16:42:42 +02:00
double precision,allocatable :: work(:), A_tmp(:,:)
integer :: info, lwork, i, j, k
allocate (A_tmp(LDA,n))
do k=1,n
do i=1,m
2021-07-28 17:19:18 +02:00
!A_tmp(i,k) = A(i,k) + 1d-16
A_tmp(i,k) = A(i,k)
2021-04-08 16:42:42 +02:00
enddo
enddo
! Find optimal size for temp arrays
allocate(work(1))
lwork = -1
2021-07-28 17:19:18 +02:00
! 'A': all M columns of U are returned in array U
! 'A': all N rows of V**T are returned in the array VT
call dgesvd('A', 'A', m, n, A_tmp, LDA, D, U, LDU, Vt, LDVt, work, lwork, info)
2021-04-08 16:42:42 +02:00
! /!\ int(WORK(1)) becomes negative when WORK(1) > 2147483648
2021-07-28 17:19:18 +02:00
if( info.ne.0 ) then
print *, ' problem in first call DGESVD !!!!'
print *, ' info = ', info
print *, ' < 0 : if INFO = -i, the i-th argument had an illegal value.'
print *, ' > 0 : if DBDSQR did not converge, INFO specifies how many '
print *, ' superdiagonals of an intermediate bidiagonal form B '
print *, ' did not converge to zero. See the description of WORK'
print *, ' above for details. '
stop
endif
2021-04-08 16:42:42 +02:00
lwork = max(int(work(1)), 5*MIN(M,N))
deallocate(work)
allocate(work(lwork))
2021-07-28 17:19:18 +02:00
call dgesvd('A', 'A', m, n, A_tmp, LDA, D, U, LDU, Vt, LDVt, work, lwork, info)
if( info.ne.0 ) then
print *, ' problem in second call DGESVD !!!!'
print *, ' info = ', info
print *, ' < 0 : if INFO = -i, the i-th argument had an illegal value.'
print *, ' > 0 : if DBDSQR did not converge, INFO specifies how many '
print *, ' superdiagonals of an intermediate bidiagonal form B '
print *, ' did not converge to zero. See the description of WORK'
print *, ' above for details. '
2021-04-08 16:42:42 +02:00
stop
endif
2021-07-28 17:19:18 +02:00
deallocate(A_tmp,work)
2021-04-08 16:42:42 +02:00
2021-07-28 17:19:18 +02:00
!do j=1, m
! do i=1, LDU
! if (dabs(U(i,j)) < 1.d-14) U(i,j) = 0.d0
! enddo
!enddo
!do j = 1, n
! do i = 1, LDVt
! if (dabs(Vt(i,j)) < 1.d-14) Vt(i,j) = 0.d0
! enddo
!enddo
end
subroutine svd_s2(A, LDA, U, LDU, D, Vt, LDVt, m, n)
implicit none
integer, intent(in) :: LDA, LDU, LDVt, m, n
double precision, intent(in) :: A(LDA,n)
double precision, intent(out) :: U(LDU,min(m,n)), Vt(LDVt,n), D(min(m,n))
double precision,allocatable :: work(:), A_tmp(:,:)
integer :: info, lwork, i, j, k
allocate (A_tmp(LDA,n))
do k=1,n
2021-04-08 16:42:42 +02:00
do i=1,m
2021-07-28 17:19:18 +02:00
A_tmp(i,k) = A(i,k)
2021-04-08 16:42:42 +02:00
enddo
enddo
2021-07-28 17:19:18 +02:00
! Find optimal size for temp arrays
allocate(work(1))
lwork = -1
! 'A': all M columns of U are returned in array U
! 'A': all N rows of V**T are returned in the array VT
call dgesvd('A', 'S', m, n, A_tmp, LDA, D, U, LDU, Vt, LDVt, work, lwork, info)
! /!\ int(WORK(1)) becomes negative when WORK(1) > 2147483648
if( info.ne.0 ) then
print *, ' problem in first call DGESVD !!!!'
stop
endif
lwork = max(int(work(1)), 5*MIN(M,N))
deallocate(work)
allocate(work(lwork))
call dgesvd('A', 'S', m, n, A_tmp, LDA, D, U, LDU, Vt, LDVt, work, lwork, info)
if( info.ne.0 ) then
print *, ' problem in second call DGESVD !!!!'
stop
endif
deallocate(A_tmp,work)
do j=1, min(m,n)
do i=1, m
if (dabs(U(i,j)) < 1.d-14) U(i,j) = 0.d0
enddo
enddo
2021-04-08 16:42:42 +02:00
do j = 1, n
do i = 1, LDVt
if (dabs(Vt(i,j)) < 1.d-14) Vt(i,j) = 0.d0
enddo
enddo
end
subroutine my_ortho_qr(A,LDA,m,n)
implicit none
BEGIN_DOC
! Orthogonalization using Q.R factorization
!
! A : matrix to orthogonalize
!
! LDA : leftmost dimension of A
!
! m : Number of rows of A
!
! n : Number of columns of A
!
END_DOC
integer, intent(in) :: m, n, LDA
double precision, intent(inout) :: A(LDA,n)
integer :: LWORK, INFO, nTAU, ii, jj
double precision, allocatable :: TAU(:), WORK(:)
double precision :: Adorgqr(LDA,n)
allocate (TAU(min(m,n)), WORK(1))
LWORK=-1
call dgeqrf( m, n, A, LDA, TAU, WORK, LWORK, INFO )
! /!\ int(WORK(1)) becomes negative when WORK(1) > 2147483648
LWORK=max(n,int(WORK(1)))
deallocate(WORK)
allocate(WORK(LWORK))
call dgeqrf(m, n, A, LDA, TAU, WORK, LWORK, INFO )
if(INFO.ne.0 ) then
print*, 'problem in DGEQRF'
endif
nTAU = size(TAU)
do jj = 1, n
do ii = 1, LDA
Adorgqr(ii,jj) = A(ii,jj)
enddo
enddo
LWORK=-1
call dorgqr(m, n, nTAU, Adorgqr, LDA, TAU, WORK, LWORK, INFO)
! /!\ int(WORK(1)) becomes negative when WORK(1) > 2147483648
LWORK=max(n,int(WORK(1)))
deallocate(WORK)
allocate(WORK(LWORK))
call dorgqr(m, n, nTAU, A, LDA, TAU, WORK, LWORK, INFO)
if(INFO.ne.0 ) then
print*, 'problem in DORGQR'
endif
deallocate(WORK,TAU)
end