1
0
mirror of https://gitlab.com/scemama/qp_plugins_scemama.git synced 2024-12-23 12:54:35 +01:00
qp_plugins_scemama/devel/casscf/natorb.irp.f

232 lines
4.9 KiB
FortranFixed
Raw Normal View History

2020-10-26 13:45:08 +01:00
BEGIN_PROVIDER [real*8, occnum, (mo_num)]
implicit none
BEGIN_DOC
! MO occupation numbers
END_DOC
integer :: i
occnum=0.D0
do i=1,n_core_inact_orb
occnum(list_core_inact(i))=2.D0
end do
do i=1,n_act_orb
occnum(list_act(i))=occ_act(i)
end do
if (bavard) then
write(6,*) ' occupation numbers '
do i=1,mo_num
write(6,*) i,occnum(i)
end do
endif
END_PROVIDER
BEGIN_PROVIDER [ real*8, natorbsCI, (n_act_orb,n_act_orb) ]
&BEGIN_PROVIDER [ real*8, occ_act, (n_act_orb) ]
implicit none
BEGIN_DOC
! Natural orbitals of CI
END_DOC
integer :: i, j
double precision :: Vt(n_act_orb,n_act_orb)
! call lapack_diag(occ_act,natorbsCI,D0tu,n_act_orb,n_act_orb)
call svd(D0tu, size(D0tu,1), natorbsCI,size(natorbsCI,1), occ_act, Vt, size(Vt,1),n_act_orb,n_act_orb)
if (bavard) then
write(6,*) ' found occupation numbers as '
do i=1,n_act_orb
write(6,*) i,occ_act(i)
end do
integer :: nmx
real*8 :: xmx
do i=1,n_act_orb
! largest element of the eigenvector should be positive
xmx=0.D0
nmx=0
do j=1,n_act_orb
if (abs(natOrbsCI(j,i)).gt.xmx) then
nmx=j
xmx=abs(natOrbsCI(j,i))
end if
end do
xmx=sign(1.D0,natOrbsCI(nmx,i))
do j=1,n_act_orb
natOrbsCI(j,i)*=xmx
end do
write(6,*) ' Eigenvector No ',i
write(6,'(5(I3,F12.5))') (j,natOrbsCI(j,i),j=1,n_act_orb)
end do
end if
END_PROVIDER
BEGIN_PROVIDER [real*8, P0tuvx_no, (n_act_orb,n_act_orb,n_act_orb,n_act_orb)]
implicit none
BEGIN_DOC
! 4-index transformation of 2part matrices
END_DOC
integer :: i,j,k,l,p,q
real*8 :: d(n_act_orb)
! index per index
! first quarter
P0tuvx_no(:,:,:,:) = P0tuvx(:,:,:,:)
do j=1,n_act_orb
do k=1,n_act_orb
do l=1,n_act_orb
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
do q=1,n_act_orb
d(p)+=P0tuvx_no(q,j,k,l)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
P0tuvx_no(p,j,k,l)=d(p)
end do
end do
end do
end do
! 2nd quarter
do j=1,n_act_orb
do k=1,n_act_orb
do l=1,n_act_orb
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
do q=1,n_act_orb
d(p)+=P0tuvx_no(j,q,k,l)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
P0tuvx_no(j,p,k,l)=d(p)
end do
end do
end do
end do
! 3rd quarter
do j=1,n_act_orb
do k=1,n_act_orb
do l=1,n_act_orb
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
do q=1,n_act_orb
d(p)+=P0tuvx_no(j,k,q,l)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
P0tuvx_no(j,k,p,l)=d(p)
end do
end do
end do
end do
! 4th quarter
do j=1,n_act_orb
do k=1,n_act_orb
do l=1,n_act_orb
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
do q=1,n_act_orb
d(p)+=P0tuvx_no(j,k,l,q)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
P0tuvx_no(j,k,l,p)=d(p)
end do
end do
end do
end do
END_PROVIDER
BEGIN_PROVIDER [real*8, one_ints_no, (mo_num,mo_num)]
implicit none
BEGIN_DOC
! Transformed one-e integrals
END_DOC
integer :: i,j, p, q
real*8 :: d(n_act_orb)
one_ints_no(:,:)=mo_one_e_integrals(:,:)
! 1st half-trf
do j=1,mo_num
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
do q=1,n_act_orb
d(p)+=one_ints_no(list_act(q),j)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
one_ints_no(list_act(p),j)=d(p)
end do
end do
! 2nd half-trf
do j=1,mo_num
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
do q=1,n_act_orb
d(p)+=one_ints_no(j,list_act(q))*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
one_ints_no(j,list_act(p))=d(p)
end do
end do
END_PROVIDER
BEGIN_PROVIDER [ double precision, NatOrbsCI_mos, (mo_num, mo_num) ]
implicit none
BEGIN_DOC
! Rotation matrix from current MOs to the CI natural MOs
END_DOC
integer :: p,q
NatOrbsCI_mos(:,:) = 0.d0
do q = 1,mo_num
NatOrbsCI_mos(q,q) = 1.d0
enddo
do q = 1,n_act_orb
do p = 1,n_act_orb
NatOrbsCI_mos(list_act(p),list_act(q)) = natorbsCI(p,q)
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [real*8, NatOrbsFCI, (ao_num,mo_num)]
implicit none
BEGIN_DOC
! FCI natural orbitals
END_DOC
call dgemm('N','N', ao_num,mo_num,mo_num,1.d0, &
mo_coef, size(mo_coef,1), &
NatOrbsCI_mos, size(NatOrbsCI_mos,1), 0.d0, &
NatOrbsFCI, size(NatOrbsFCI,1))
END_PROVIDER