mirror of
https://gitlab.com/scemama/qp_plugins_scemama.git
synced 2024-11-07 06:33:40 +01:00
232 lines
4.9 KiB
FortranFixed
232 lines
4.9 KiB
FortranFixed
|
BEGIN_PROVIDER [real*8, occnum, (mo_num)]
|
||
|
implicit none
|
||
|
BEGIN_DOC
|
||
|
! MO occupation numbers
|
||
|
END_DOC
|
||
|
|
||
|
integer :: i
|
||
|
occnum=0.D0
|
||
|
do i=1,n_core_inact_orb
|
||
|
occnum(list_core_inact(i))=2.D0
|
||
|
end do
|
||
|
|
||
|
do i=1,n_act_orb
|
||
|
occnum(list_act(i))=occ_act(i)
|
||
|
end do
|
||
|
|
||
|
if (bavard) then
|
||
|
write(6,*) ' occupation numbers '
|
||
|
do i=1,mo_num
|
||
|
write(6,*) i,occnum(i)
|
||
|
end do
|
||
|
endif
|
||
|
|
||
|
END_PROVIDER
|
||
|
|
||
|
|
||
|
BEGIN_PROVIDER [ real*8, natorbsCI, (n_act_orb,n_act_orb) ]
|
||
|
&BEGIN_PROVIDER [ real*8, occ_act, (n_act_orb) ]
|
||
|
implicit none
|
||
|
BEGIN_DOC
|
||
|
! Natural orbitals of CI
|
||
|
END_DOC
|
||
|
integer :: i, j
|
||
|
double precision :: Vt(n_act_orb,n_act_orb)
|
||
|
|
||
|
! call lapack_diag(occ_act,natorbsCI,D0tu,n_act_orb,n_act_orb)
|
||
|
call svd(D0tu, size(D0tu,1), natorbsCI,size(natorbsCI,1), occ_act, Vt, size(Vt,1),n_act_orb,n_act_orb)
|
||
|
|
||
|
if (bavard) then
|
||
|
write(6,*) ' found occupation numbers as '
|
||
|
do i=1,n_act_orb
|
||
|
write(6,*) i,occ_act(i)
|
||
|
end do
|
||
|
|
||
|
integer :: nmx
|
||
|
real*8 :: xmx
|
||
|
do i=1,n_act_orb
|
||
|
! largest element of the eigenvector should be positive
|
||
|
xmx=0.D0
|
||
|
nmx=0
|
||
|
do j=1,n_act_orb
|
||
|
if (abs(natOrbsCI(j,i)).gt.xmx) then
|
||
|
nmx=j
|
||
|
xmx=abs(natOrbsCI(j,i))
|
||
|
end if
|
||
|
end do
|
||
|
xmx=sign(1.D0,natOrbsCI(nmx,i))
|
||
|
do j=1,n_act_orb
|
||
|
natOrbsCI(j,i)*=xmx
|
||
|
end do
|
||
|
|
||
|
write(6,*) ' Eigenvector No ',i
|
||
|
write(6,'(5(I3,F12.5))') (j,natOrbsCI(j,i),j=1,n_act_orb)
|
||
|
end do
|
||
|
end if
|
||
|
|
||
|
END_PROVIDER
|
||
|
|
||
|
|
||
|
BEGIN_PROVIDER [real*8, P0tuvx_no, (n_act_orb,n_act_orb,n_act_orb,n_act_orb)]
|
||
|
implicit none
|
||
|
BEGIN_DOC
|
||
|
! 4-index transformation of 2part matrices
|
||
|
END_DOC
|
||
|
integer :: i,j,k,l,p,q
|
||
|
real*8 :: d(n_act_orb)
|
||
|
|
||
|
! index per index
|
||
|
! first quarter
|
||
|
P0tuvx_no(:,:,:,:) = P0tuvx(:,:,:,:)
|
||
|
|
||
|
do j=1,n_act_orb
|
||
|
do k=1,n_act_orb
|
||
|
do l=1,n_act_orb
|
||
|
do p=1,n_act_orb
|
||
|
d(p)=0.D0
|
||
|
end do
|
||
|
do p=1,n_act_orb
|
||
|
do q=1,n_act_orb
|
||
|
d(p)+=P0tuvx_no(q,j,k,l)*natorbsCI(q,p)
|
||
|
end do
|
||
|
end do
|
||
|
do p=1,n_act_orb
|
||
|
P0tuvx_no(p,j,k,l)=d(p)
|
||
|
end do
|
||
|
end do
|
||
|
end do
|
||
|
end do
|
||
|
! 2nd quarter
|
||
|
do j=1,n_act_orb
|
||
|
do k=1,n_act_orb
|
||
|
do l=1,n_act_orb
|
||
|
do p=1,n_act_orb
|
||
|
d(p)=0.D0
|
||
|
end do
|
||
|
do p=1,n_act_orb
|
||
|
do q=1,n_act_orb
|
||
|
d(p)+=P0tuvx_no(j,q,k,l)*natorbsCI(q,p)
|
||
|
end do
|
||
|
end do
|
||
|
do p=1,n_act_orb
|
||
|
P0tuvx_no(j,p,k,l)=d(p)
|
||
|
end do
|
||
|
end do
|
||
|
end do
|
||
|
end do
|
||
|
! 3rd quarter
|
||
|
do j=1,n_act_orb
|
||
|
do k=1,n_act_orb
|
||
|
do l=1,n_act_orb
|
||
|
do p=1,n_act_orb
|
||
|
d(p)=0.D0
|
||
|
end do
|
||
|
do p=1,n_act_orb
|
||
|
do q=1,n_act_orb
|
||
|
d(p)+=P0tuvx_no(j,k,q,l)*natorbsCI(q,p)
|
||
|
end do
|
||
|
end do
|
||
|
do p=1,n_act_orb
|
||
|
P0tuvx_no(j,k,p,l)=d(p)
|
||
|
end do
|
||
|
end do
|
||
|
end do
|
||
|
end do
|
||
|
! 4th quarter
|
||
|
do j=1,n_act_orb
|
||
|
do k=1,n_act_orb
|
||
|
do l=1,n_act_orb
|
||
|
do p=1,n_act_orb
|
||
|
d(p)=0.D0
|
||
|
end do
|
||
|
do p=1,n_act_orb
|
||
|
do q=1,n_act_orb
|
||
|
d(p)+=P0tuvx_no(j,k,l,q)*natorbsCI(q,p)
|
||
|
end do
|
||
|
end do
|
||
|
do p=1,n_act_orb
|
||
|
P0tuvx_no(j,k,l,p)=d(p)
|
||
|
end do
|
||
|
end do
|
||
|
end do
|
||
|
end do
|
||
|
|
||
|
END_PROVIDER
|
||
|
|
||
|
|
||
|
|
||
|
BEGIN_PROVIDER [real*8, one_ints_no, (mo_num,mo_num)]
|
||
|
implicit none
|
||
|
BEGIN_DOC
|
||
|
! Transformed one-e integrals
|
||
|
END_DOC
|
||
|
integer :: i,j, p, q
|
||
|
real*8 :: d(n_act_orb)
|
||
|
one_ints_no(:,:)=mo_one_e_integrals(:,:)
|
||
|
|
||
|
! 1st half-trf
|
||
|
do j=1,mo_num
|
||
|
do p=1,n_act_orb
|
||
|
d(p)=0.D0
|
||
|
end do
|
||
|
do p=1,n_act_orb
|
||
|
do q=1,n_act_orb
|
||
|
d(p)+=one_ints_no(list_act(q),j)*natorbsCI(q,p)
|
||
|
end do
|
||
|
end do
|
||
|
do p=1,n_act_orb
|
||
|
one_ints_no(list_act(p),j)=d(p)
|
||
|
end do
|
||
|
end do
|
||
|
|
||
|
! 2nd half-trf
|
||
|
do j=1,mo_num
|
||
|
do p=1,n_act_orb
|
||
|
d(p)=0.D0
|
||
|
end do
|
||
|
do p=1,n_act_orb
|
||
|
do q=1,n_act_orb
|
||
|
d(p)+=one_ints_no(j,list_act(q))*natorbsCI(q,p)
|
||
|
end do
|
||
|
end do
|
||
|
do p=1,n_act_orb
|
||
|
one_ints_no(j,list_act(p))=d(p)
|
||
|
end do
|
||
|
end do
|
||
|
END_PROVIDER
|
||
|
|
||
|
|
||
|
BEGIN_PROVIDER [ double precision, NatOrbsCI_mos, (mo_num, mo_num) ]
|
||
|
implicit none
|
||
|
BEGIN_DOC
|
||
|
! Rotation matrix from current MOs to the CI natural MOs
|
||
|
END_DOC
|
||
|
integer :: p,q
|
||
|
|
||
|
NatOrbsCI_mos(:,:) = 0.d0
|
||
|
|
||
|
do q = 1,mo_num
|
||
|
NatOrbsCI_mos(q,q) = 1.d0
|
||
|
enddo
|
||
|
|
||
|
do q = 1,n_act_orb
|
||
|
do p = 1,n_act_orb
|
||
|
NatOrbsCI_mos(list_act(p),list_act(q)) = natorbsCI(p,q)
|
||
|
enddo
|
||
|
enddo
|
||
|
END_PROVIDER
|
||
|
|
||
|
|
||
|
BEGIN_PROVIDER [real*8, NatOrbsFCI, (ao_num,mo_num)]
|
||
|
implicit none
|
||
|
BEGIN_DOC
|
||
|
! FCI natural orbitals
|
||
|
END_DOC
|
||
|
|
||
|
call dgemm('N','N', ao_num,mo_num,mo_num,1.d0, &
|
||
|
mo_coef, size(mo_coef,1), &
|
||
|
NatOrbsCI_mos, size(NatOrbsCI_mos,1), 0.d0, &
|
||
|
NatOrbsFCI, size(NatOrbsFCI,1))
|
||
|
END_PROVIDER
|
||
|
|