2020-10-26 13:45:08 +01:00
|
|
|
use bitmasks
|
|
|
|
|
|
|
|
real*8 function hessmat_itju(i,t,j,u)
|
|
|
|
BEGIN_DOC
|
|
|
|
! the orbital hessian for core/inactive -> active, core/inactive -> active
|
|
|
|
! i, t, j, u are list indices, the corresponding orbitals are ii,tt,jj,uu
|
|
|
|
!
|
|
|
|
! we assume natural orbitals
|
|
|
|
END_DOC
|
|
|
|
implicit none
|
|
|
|
integer :: i,t,j,u,ii,tt,uu,v,vv,x,xx,y,jj
|
|
|
|
real*8 :: term,t2
|
|
|
|
|
|
|
|
ii=list_core_inact(i)
|
|
|
|
tt=list_act(t)
|
|
|
|
if (i.eq.j) then
|
|
|
|
if (t.eq.u) then
|
|
|
|
! diagonal element
|
|
|
|
term=occnum(tt)*Fipq(ii,ii)+2.D0*(Fipq(tt,tt)+Fapq(tt,tt)) &
|
|
|
|
-2.D0*(Fipq(ii,ii)+Fapq(ii,ii))
|
|
|
|
term+=2.D0*(3.D0*bielec_pxxq_no(tt,i,i,tt)-bielec_pqxx_no(tt,tt,i,i))
|
|
|
|
term-=2.D0*occnum(tt)*(3.D0*bielec_pxxq_no(tt,i,i,tt) &
|
|
|
|
-bielec_pqxx_no(tt,tt,i,i))
|
|
|
|
term-=occnum(tt)*Fipq(tt,tt)
|
|
|
|
do v=1,n_act_orb
|
|
|
|
vv=list_act(v)
|
|
|
|
do x=1,n_act_orb
|
|
|
|
xx=list_act(x)
|
|
|
|
term+=2.D0*(P0tuvx_no(t,t,v,x)*bielec_pqxx_no(vv,xx,i,i) &
|
|
|
|
+(P0tuvx_no(t,x,v,t)+P0tuvx_no(t,x,t,v))* &
|
|
|
|
bielec_pxxq_no(vv,i,i,xx))
|
|
|
|
do y=1,n_act_orb
|
|
|
|
term-=2.D0*P0tuvx_no(t,v,x,y)*bielecCI_no(t,v,y,xx)
|
|
|
|
end do
|
|
|
|
end do
|
|
|
|
end do
|
|
|
|
else
|
|
|
|
! it/iu, t != u
|
|
|
|
uu=list_act(u)
|
|
|
|
term=2.D0*(Fipq(tt,uu)+Fapq(tt,uu))
|
|
|
|
term+=2.D0*(4.D0*bielec_PxxQ_no(tt,i,j,uu)-bielec_PxxQ_no(uu,i,j,tt) &
|
|
|
|
-bielec_PQxx_no(tt,uu,i,j))
|
|
|
|
term-=occnum(tt)*Fipq(uu,tt)
|
|
|
|
term-=(occnum(tt)+occnum(uu)) &
|
|
|
|
*(3.D0*bielec_PxxQ_no(tt,i,i,uu)-bielec_PQxx_no(uu,tt,i,i))
|
|
|
|
do v=1,n_act_orb
|
|
|
|
vv=list_act(v)
|
|
|
|
! term-=D0tu(u,v)*Fipq(tt,vv) ! published, but inverting t and u seems more correct
|
|
|
|
do x=1,n_act_orb
|
|
|
|
xx=list_act(x)
|
|
|
|
term+=2.D0*(P0tuvx_no(u,t,v,x)*bielec_pqxx_no(vv,xx,i,i) &
|
|
|
|
+(P0tuvx_no(u,x,v,t)+P0tuvx_no(u,x,t,v)) &
|
|
|
|
*bielec_pxxq_no(vv,i,i,xx))
|
|
|
|
do y=1,n_act_orb
|
|
|
|
term-=2.D0*P0tuvx_no(t,v,x,y)*bielecCI_no(u,v,y,xx)
|
|
|
|
end do
|
|
|
|
end do
|
|
|
|
end do
|
|
|
|
end if
|
|
|
|
else
|
|
|
|
! it/ju
|
|
|
|
jj=list_core_inact(j)
|
|
|
|
uu=list_act(u)
|
|
|
|
if (t.eq.u) then
|
|
|
|
term=occnum(tt)*Fipq(ii,jj)
|
|
|
|
term-=2.D0*(Fipq(ii,jj)+Fapq(ii,jj))
|
|
|
|
else
|
|
|
|
term=0.D0
|
|
|
|
end if
|
|
|
|
term+=2.D0*(4.D0*bielec_PxxQ_no(tt,i,j,uu)-bielec_PxxQ_no(uu,i,j,tt) &
|
|
|
|
-bielec_PQxx_no(tt,uu,i,j))
|
|
|
|
term-=(occnum(tt)+occnum(uu))* &
|
|
|
|
(4.D0*bielec_PxxQ_no(tt,i,j,uu)-bielec_PxxQ_no(uu,i,j,tt) &
|
|
|
|
-bielec_PQxx_no(uu,tt,i,j))
|
|
|
|
do v=1,n_act_orb
|
|
|
|
vv=list_act(v)
|
|
|
|
do x=1,n_act_orb
|
|
|
|
xx=list_act(x)
|
|
|
|
term+=2.D0*(P0tuvx_no(u,t,v,x)*bielec_pqxx_no(vv,xx,i,j) &
|
|
|
|
+(P0tuvx_no(u,x,v,t)+P0tuvx_no(u,x,t,v)) &
|
|
|
|
*bielec_pxxq_no(vv,i,j,xx))
|
|
|
|
end do
|
|
|
|
end do
|
|
|
|
end if
|
|
|
|
|
|
|
|
term*=2.D0
|
|
|
|
hessmat_itju=term
|
|
|
|
|
|
|
|
end function hessmat_itju
|
|
|
|
|
|
|
|
real*8 function hessmat_itja(i,t,j,a)
|
|
|
|
BEGIN_DOC
|
|
|
|
! the orbital hessian for core/inactive -> active, core/inactive -> virtual
|
|
|
|
END_DOC
|
|
|
|
implicit none
|
|
|
|
integer :: i,t,j,a,ii,tt,jj,aa,v,vv,x,y
|
|
|
|
real*8 :: term
|
|
|
|
|
|
|
|
! it/ja
|
|
|
|
ii=list_core_inact(i)
|
|
|
|
tt=list_act(t)
|
|
|
|
jj=list_core_inact(j)
|
|
|
|
aa=list_virt(a)
|
|
|
|
term=2.D0*(4.D0*bielec_pxxq_no(aa,j,i,tt) &
|
|
|
|
-bielec_pqxx_no(aa,tt,i,j) -bielec_pxxq_no(aa,i,j,tt))
|
|
|
|
term-=occnum(tt)*(4.D0*bielec_pxxq_no(aa,j,i,tt) &
|
|
|
|
-bielec_pqxx_no(aa,tt,i,j) -bielec_pxxq_no(aa,i,j,tt))
|
|
|
|
if (i.eq.j) then
|
|
|
|
term+=2.D0*(Fipq(aa,tt)+Fapq(aa,tt))
|
|
|
|
term-=0.5D0*occnum(tt)*Fipq(aa,tt)
|
|
|
|
do v=1,n_act_orb
|
|
|
|
do x=1,n_act_orb
|
|
|
|
do y=1,n_act_orb
|
|
|
|
term-=P0tuvx_no(t,v,x,y)*bielecCI_no(x,y,v,aa)
|
|
|
|
end do
|
|
|
|
end do
|
|
|
|
end do
|
|
|
|
end if
|
|
|
|
term*=2.D0
|
|
|
|
hessmat_itja=term
|
|
|
|
|
|
|
|
end function hessmat_itja
|
|
|
|
|
|
|
|
real*8 function hessmat_itua(i,t,u,a)
|
|
|
|
BEGIN_DOC
|
|
|
|
! the orbital hessian for core/inactive -> active, active -> virtual
|
|
|
|
END_DOC
|
|
|
|
implicit none
|
|
|
|
integer :: i,t,u,a,ii,tt,uu,aa,v,vv,x,xx,u3,t3,v3
|
|
|
|
real*8 :: term
|
|
|
|
|
|
|
|
ii=list_core_inact(i)
|
|
|
|
tt=list_act(t)
|
|
|
|
t3=t+n_core_inact_orb
|
|
|
|
uu=list_act(u)
|
|
|
|
u3=u+n_core_inact_orb
|
|
|
|
aa=list_virt(a)
|
|
|
|
if (t.eq.u) then
|
|
|
|
term=-occnum(tt)*Fipq(aa,ii)
|
|
|
|
else
|
|
|
|
term=0.D0
|
|
|
|
end if
|
|
|
|
term-=occnum(uu)*(bielec_pqxx_no(aa,ii,t3,u3)-4.D0*bielec_pqxx_no(aa,uu,t3,i)&
|
|
|
|
+bielec_pxxq_no(aa,t3,u3,ii))
|
|
|
|
do v=1,n_act_orb
|
|
|
|
vv=list_act(v)
|
|
|
|
v3=v+n_core_inact_orb
|
|
|
|
do x=1,n_act_orb
|
|
|
|
integer :: x3
|
|
|
|
xx=list_act(x)
|
|
|
|
x3=x+n_core_inact_orb
|
|
|
|
term-=2.D0*(P0tuvx_no(t,u,v,x)*bielec_pqxx_no(aa,ii,v3,x3) &
|
|
|
|
+(P0tuvx_no(t,v,u,x)+P0tuvx_no(t,v,x,u)) &
|
|
|
|
*bielec_pqxx_no(aa,xx,v3,i))
|
|
|
|
end do
|
|
|
|
end do
|
|
|
|
if (t.eq.u) then
|
|
|
|
term+=Fipq(aa,ii)+Fapq(aa,ii)
|
|
|
|
end if
|
|
|
|
term*=2.D0
|
|
|
|
hessmat_itua=term
|
|
|
|
|
|
|
|
end function hessmat_itua
|
|
|
|
|
|
|
|
real*8 function hessmat_iajb(i,a,j,b)
|
|
|
|
BEGIN_DOC
|
|
|
|
! the orbital hessian for core/inactive -> virtual, core/inactive -> virtual
|
|
|
|
END_DOC
|
|
|
|
implicit none
|
|
|
|
integer :: i,a,j,b,ii,aa,jj,bb
|
|
|
|
real*8 :: term
|
|
|
|
|
|
|
|
ii=list_core_inact(i)
|
|
|
|
aa=list_virt(a)
|
|
|
|
if (i.eq.j) then
|
|
|
|
if (a.eq.b) then
|
|
|
|
! ia/ia
|
|
|
|
term=2.D0*(Fipq(aa,aa)+Fapq(aa,aa)-Fipq(ii,ii)-Fapq(ii,ii))
|
|
|
|
term+=2.D0*(3.D0*bielec_pxxq_no(aa,i,i,aa)-bielec_pqxx_no(aa,aa,i,i))
|
|
|
|
else
|
|
|
|
bb=list_virt(b)
|
|
|
|
! ia/ib
|
|
|
|
term=2.D0*(Fipq(aa,bb)+Fapq(aa,bb))
|
|
|
|
term+=2.D0*(3.D0*bielec_pxxq_no(aa,i,i,bb)-bielec_pqxx_no(aa,bb,i,i))
|
|
|
|
end if
|
|
|
|
else
|
|
|
|
! ia/jb
|
|
|
|
jj=list_core_inact(j)
|
|
|
|
bb=list_virt(b)
|
|
|
|
term=2.D0*(4.D0*bielec_pxxq_no(aa,i,j,bb)-bielec_pqxx_no(aa,bb,i,j) &
|
|
|
|
-bielec_pxxq_no(aa,j,i,bb))
|
|
|
|
if (a.eq.b) then
|
|
|
|
term-=2.D0*(Fipq(ii,jj)+Fapq(ii,jj))
|
|
|
|
end if
|
|
|
|
end if
|
|
|
|
term*=2.D0
|
|
|
|
hessmat_iajb=term
|
|
|
|
|
|
|
|
end function hessmat_iajb
|
|
|
|
|
|
|
|
real*8 function hessmat_iatb(i,a,t,b)
|
|
|
|
BEGIN_DOC
|
|
|
|
! the orbital hessian for core/inactive -> virtual, active -> virtual
|
|
|
|
END_DOC
|
|
|
|
implicit none
|
|
|
|
integer :: i,a,t,b,ii,aa,tt,bb,v,vv,x,y,v3,t3
|
|
|
|
real*8 :: term
|
|
|
|
|
|
|
|
ii=list_core_inact(i)
|
|
|
|
aa=list_virt(a)
|
|
|
|
tt=list_act(t)
|
|
|
|
bb=list_virt(b)
|
|
|
|
t3=t+n_core_inact_orb
|
|
|
|
term=occnum(tt)*(4.D0*bielec_pxxq_no(aa,i,t3,bb)-bielec_pxxq_no(aa,t3,i,bb)&
|
|
|
|
-bielec_pqxx_no(aa,bb,i,t3))
|
|
|
|
if (a.eq.b) then
|
|
|
|
term-=Fipq(tt,ii)+Fapq(tt,ii)
|
|
|
|
term-=0.5D0*occnum(tt)*Fipq(tt,ii)
|
|
|
|
do v=1,n_act_orb
|
|
|
|
do x=1,n_act_orb
|
|
|
|
do y=1,n_act_orb
|
|
|
|
term-=P0tuvx_no(t,v,x,y)*bielecCI_no(x,y,v,ii)
|
|
|
|
end do
|
|
|
|
end do
|
|
|
|
end do
|
|
|
|
end if
|
|
|
|
term*=2.D0
|
|
|
|
hessmat_iatb=term
|
|
|
|
|
|
|
|
end function hessmat_iatb
|
|
|
|
|
|
|
|
real*8 function hessmat_taub(t,a,u,b)
|
|
|
|
BEGIN_DOC
|
|
|
|
! the orbital hessian for act->virt,act->virt
|
|
|
|
END_DOC
|
|
|
|
implicit none
|
|
|
|
integer :: t,a,u,b,tt,aa,uu,bb,v,vv,x,xx,y
|
|
|
|
integer :: v3,x3
|
|
|
|
real*8 :: term,t1,t2,t3
|
|
|
|
|
|
|
|
tt=list_act(t)
|
|
|
|
aa=list_virt(a)
|
|
|
|
if (t == u) then
|
|
|
|
if (a == b) then
|
|
|
|
! ta/ta
|
|
|
|
t1=occnum(tt)*Fipq(aa,aa)
|
|
|
|
t2=0.D0
|
|
|
|
t3=0.D0
|
|
|
|
t1-=occnum(tt)*Fipq(tt,tt)
|
|
|
|
do v=1,n_act_orb
|
|
|
|
vv=list_act(v)
|
|
|
|
v3=v+n_core_inact_orb
|
|
|
|
do x=1,n_act_orb
|
|
|
|
xx=list_act(x)
|
|
|
|
x3=x+n_core_inact_orb
|
|
|
|
t2+=2.D0*(P0tuvx_no(t,t,v,x)*bielec_pqxx_no(aa,aa,v3,x3) &
|
|
|
|
+(P0tuvx_no(t,x,v,t)+P0tuvx_no(t,x,t,v))* &
|
|
|
|
bielec_pxxq_no(aa,x3,v3,aa))
|
|
|
|
do y=1,n_act_orb
|
|
|
|
t3-=2.D0*P0tuvx_no(t,v,x,y)*bielecCI_no(t,v,y,xx)
|
|
|
|
end do
|
|
|
|
end do
|
|
|
|
end do
|
|
|
|
term=t1+t2+t3
|
|
|
|
else
|
|
|
|
bb=list_virt(b)
|
|
|
|
! ta/tb b/=a
|
|
|
|
term=occnum(tt)*Fipq(aa,bb)
|
|
|
|
do v=1,n_act_orb
|
|
|
|
vv=list_act(v)
|
|
|
|
v3=v+n_core_inact_orb
|
|
|
|
do x=1,n_act_orb
|
|
|
|
xx=list_act(x)
|
|
|
|
x3=x+n_core_inact_orb
|
|
|
|
term+=2.D0*(P0tuvx_no(t,t,v,x)*bielec_pqxx_no(aa,bb,v3,x3) &
|
|
|
|
+(P0tuvx_no(t,x,v,t)+P0tuvx_no(t,x,t,v)) &
|
|
|
|
*bielec_pxxq_no(aa,x3,v3,bb))
|
|
|
|
end do
|
|
|
|
end do
|
|
|
|
end if
|
|
|
|
else
|
|
|
|
! ta/ub t/=u
|
|
|
|
uu=list_act(u)
|
|
|
|
bb=list_virt(b)
|
|
|
|
term=0.D0
|
|
|
|
do v=1,n_act_orb
|
|
|
|
vv=list_act(v)
|
|
|
|
v3=v+n_core_inact_orb
|
|
|
|
do x=1,n_act_orb
|
|
|
|
xx=list_act(x)
|
|
|
|
x3=x+n_core_inact_orb
|
|
|
|
term+=2.D0*(P0tuvx_no(t,u,v,x)*bielec_pqxx_no(aa,bb,v3,x3) &
|
|
|
|
+(P0tuvx_no(t,x,v,u)+P0tuvx_no(t,x,u,v)) &
|
|
|
|
*bielec_pxxq_no(aa,x3,v3,bb))
|
|
|
|
end do
|
|
|
|
end do
|
|
|
|
if (a.eq.b) then
|
|
|
|
term-=0.5D0*(occnum(tt)*Fipq(uu,tt)+occnum(uu)*Fipq(tt,uu))
|
|
|
|
do v=1,n_act_orb
|
|
|
|
do y=1,n_act_orb
|
|
|
|
do x=1,n_act_orb
|
|
|
|
term-=P0tuvx_no(t,v,x,y)*bielecCI_no(x,y,v,uu)
|
|
|
|
term-=P0tuvx_no(u,v,x,y)*bielecCI_no(x,y,v,tt)
|
|
|
|
end do
|
|
|
|
end do
|
|
|
|
end do
|
|
|
|
end if
|
|
|
|
|
|
|
|
end if
|
|
|
|
|
|
|
|
term*=2.D0
|
|
|
|
hessmat_taub=term
|
|
|
|
|
|
|
|
end function hessmat_taub
|
|
|
|
|
|
|
|
BEGIN_PROVIDER [real*8, hessdiag, (nMonoEx)]
|
|
|
|
BEGIN_DOC
|
|
|
|
! the diagonal of the Hessian, needed for the Davidson procedure
|
|
|
|
END_DOC
|
|
|
|
implicit none
|
|
|
|
integer :: i,t,a,indx,indx_shift
|
|
|
|
real*8 :: hessmat_itju,hessmat_iajb,hessmat_taub
|
|
|
|
|
|
|
|
!$OMP PARALLEL DEFAULT(NONE) &
|
|
|
|
!$OMP SHARED(hessdiag,n_core_inact_orb,n_act_orb,n_virt_orb,nMonoEx) &
|
|
|
|
!$OMP PRIVATE(i,indx,t,a,indx_shift)
|
|
|
|
|
|
|
|
!$OMP DO
|
|
|
|
do i=1,n_core_inact_orb
|
|
|
|
do t=1,n_act_orb
|
|
|
|
indx = t + (i-1)*n_act_orb
|
|
|
|
hessdiag(indx)=hessmat_itju(i,t,i,t)
|
|
|
|
end do
|
|
|
|
end do
|
|
|
|
!$OMP END DO NOWAIT
|
|
|
|
|
|
|
|
indx_shift = n_core_inact_orb*n_act_orb
|
|
|
|
!$OMP DO
|
|
|
|
do a=1,n_virt_orb
|
|
|
|
do i=1,n_core_inact_orb
|
|
|
|
indx = a + (i-1)*n_virt_orb + indx_shift
|
|
|
|
hessdiag(indx)=hessmat_iajb(i,a,i,a)
|
|
|
|
end do
|
|
|
|
end do
|
|
|
|
!$OMP END DO NOWAIT
|
|
|
|
|
|
|
|
indx_shift += n_core_inact_orb*n_virt_orb
|
|
|
|
!$OMP DO
|
|
|
|
do a=1,n_virt_orb
|
|
|
|
do t=1,n_act_orb
|
|
|
|
indx = a + (t-1)*n_virt_orb + indx_shift
|
|
|
|
hessdiag(indx)=hessmat_taub(t,a,t,a)
|
|
|
|
end do
|
|
|
|
end do
|
|
|
|
!$OMP END DO
|
|
|
|
!$OMP END PARALLEL
|
|
|
|
|
|
|
|
END_PROVIDER
|
2021-07-02 16:02:33 +02:00
|
|
|
|
|
|
|
|
|
|
|
BEGIN_PROVIDER [double precision, hessmat, (nMonoEx,nMonoEx)]
|
|
|
|
implicit none
|
|
|
|
integer :: i,j,t,u,a,b
|
|
|
|
integer :: indx,indx_tmp, jndx, jndx_tmp
|
|
|
|
integer :: ustart,bstart
|
|
|
|
real*8 :: hessmat_itju
|
|
|
|
real*8 :: hessmat_itja
|
|
|
|
real*8 :: hessmat_itua
|
|
|
|
real*8 :: hessmat_iajb
|
|
|
|
real*8 :: hessmat_iatb
|
|
|
|
real*8 :: hessmat_taub
|
|
|
|
! c-a c-v a-v
|
|
|
|
! c-a | X X X
|
|
|
|
! c-v | X X
|
|
|
|
! a-v | X
|
|
|
|
|
|
|
|
provide mo_two_e_integrals_in_map
|
|
|
|
|
|
|
|
hessmat = 0.d0
|
|
|
|
|
|
|
|
!$OMP PARALLEL DEFAULT(NONE) &
|
|
|
|
!$OMP SHARED(hessmat,n_c_a_prov,list_idx_c_a,n_core_inact_orb,n_act_orb,mat_idx_c_a) &
|
|
|
|
!$OMP PRIVATE(indx_tmp,indx,i,t,j,u,ustart,jndx)
|
|
|
|
|
|
|
|
!$OMP DO
|
|
|
|
!!!! < Core-active| H |Core-active >
|
|
|
|
! Core-active excitations
|
|
|
|
do indx_tmp = 1, n_c_a_prov
|
|
|
|
indx = list_idx_c_a(1,indx_tmp)
|
|
|
|
i = list_idx_c_a(2,indx_tmp)
|
|
|
|
t = list_idx_c_a(3,indx_tmp)
|
|
|
|
! Core-active excitations
|
|
|
|
do j = 1, n_core_inact_orb
|
|
|
|
if (i.eq.j) then
|
|
|
|
ustart=t
|
|
|
|
else
|
|
|
|
ustart=1
|
|
|
|
end if
|
|
|
|
do u=ustart,n_act_orb
|
|
|
|
jndx = mat_idx_c_a(j,u)
|
|
|
|
hessmat(jndx,indx) = hessmat_itju(i,t,j,u)
|
|
|
|
hessmat(indx,jndx) = hessmat(jndx,indx)
|
|
|
|
enddo
|
|
|
|
enddo
|
|
|
|
enddo
|
|
|
|
!$OMP END DO NOWAIT
|
|
|
|
!$OMP END PARALLEL
|
|
|
|
|
|
|
|
!$OMP PARALLEL DEFAULT(NONE) &
|
|
|
|
!$OMP SHARED(hessmat,n_c_a_prov,n_c_v_prov,list_idx_c_a,list_idx_c_v) &
|
|
|
|
!$OMP PRIVATE(indx_tmp,jndx_tmp,indx,i,t,j,a,jndx)
|
|
|
|
|
|
|
|
!$OMP DO
|
|
|
|
!!!! < Core-active| H |Core-VIRTUAL >
|
|
|
|
! Core-active excitations
|
|
|
|
do indx_tmp = 1, n_c_a_prov
|
|
|
|
indx = list_idx_c_a(1,indx_tmp)
|
|
|
|
i = list_idx_c_a(2,indx_tmp)
|
|
|
|
t = list_idx_c_a(3,indx_tmp)
|
|
|
|
! Core-VIRTUAL excitations
|
|
|
|
do jndx_tmp = 1, n_c_v_prov
|
|
|
|
jndx = list_idx_c_v(1,jndx_tmp)
|
|
|
|
j = list_idx_c_v(2,jndx_tmp)
|
|
|
|
a = list_idx_c_v(3,jndx_tmp)
|
|
|
|
hessmat(jndx,indx) = hessmat_itja(i,t,j,a)
|
|
|
|
hessmat(indx,jndx) = hessmat(jndx,indx)
|
|
|
|
enddo
|
|
|
|
enddo
|
|
|
|
!$OMP END DO NOWAIT
|
|
|
|
!$OMP END PARALLEL
|
|
|
|
|
|
|
|
!$OMP PARALLEL DEFAULT(NONE) &
|
|
|
|
!$OMP SHARED(hessmat,n_c_a_prov,n_a_v_prov,list_idx_c_a,list_idx_a_v) &
|
|
|
|
!$OMP PRIVATE(indx_tmp,jndx_tmp,indx,i,t,u,a,jndx)
|
|
|
|
|
|
|
|
!$OMP DO
|
|
|
|
!!!! < Core-active| H |ACTIVE-VIRTUAL >
|
|
|
|
! Core-active excitations
|
|
|
|
do indx_tmp = 1, n_c_a_prov
|
|
|
|
indx = list_idx_c_a(1,indx_tmp)
|
|
|
|
i = list_idx_c_a(2,indx_tmp)
|
|
|
|
t = list_idx_c_a(3,indx_tmp)
|
|
|
|
! ACTIVE-VIRTUAL excitations
|
|
|
|
do jndx_tmp = 1, n_a_v_prov
|
|
|
|
jndx = list_idx_a_v(1,jndx_tmp)
|
|
|
|
u = list_idx_a_v(2,jndx_tmp)
|
|
|
|
a = list_idx_a_v(3,jndx_tmp)
|
|
|
|
hessmat(jndx,indx) = hessmat_itua(i,t,u,a)
|
|
|
|
hessmat(indx,jndx) = hessmat(jndx,indx)
|
|
|
|
enddo
|
|
|
|
enddo
|
|
|
|
|
|
|
|
!$OMP END DO NOWAIT
|
|
|
|
!$OMP END PARALLEL
|
|
|
|
|
2021-07-02 17:46:24 +02:00
|
|
|
|
|
|
|
if(hess_cv_cv)then
|
2021-07-02 16:02:33 +02:00
|
|
|
!$OMP PARALLEL DEFAULT(NONE) &
|
|
|
|
!$OMP SHARED(hessmat,n_c_v_prov,list_idx_c_v,n_core_inact_orb,n_virt_orb,mat_idx_c_v) &
|
|
|
|
!$OMP PRIVATE(indx_tmp,indx,i,a,j,b,bstart,jndx)
|
2021-07-02 17:46:24 +02:00
|
|
|
!$OMP DO
|
|
|
|
!!!!! < Core-VIRTUAL | H |Core-VIRTUAL >
|
2021-07-02 16:02:33 +02:00
|
|
|
! Core-VIRTUAL excitations
|
2021-07-02 17:46:24 +02:00
|
|
|
do indx_tmp = 1, n_c_v_prov
|
|
|
|
indx = list_idx_c_v(1,indx_tmp)
|
|
|
|
i = list_idx_c_v(2,indx_tmp)
|
|
|
|
a = list_idx_c_v(3,indx_tmp)
|
|
|
|
! Core-VIRTUAL excitations
|
|
|
|
do j = 1, n_core_inact_orb
|
|
|
|
if (i.eq.j) then
|
|
|
|
bstart=a
|
|
|
|
else
|
|
|
|
bstart=1
|
|
|
|
end if
|
|
|
|
do b=bstart,n_virt_orb
|
|
|
|
jndx = mat_idx_c_v(j,b)
|
|
|
|
hessmat(jndx,indx) = hessmat_iajb(i,a,j,b)
|
|
|
|
hessmat(indx,jndx) = hessmat(jndx,indx)
|
|
|
|
enddo
|
2021-07-02 16:02:33 +02:00
|
|
|
enddo
|
|
|
|
enddo
|
2021-07-02 17:46:24 +02:00
|
|
|
|
2021-07-02 16:02:33 +02:00
|
|
|
!$OMP END DO NOWAIT
|
|
|
|
!$OMP END PARALLEL
|
2021-07-02 17:46:24 +02:00
|
|
|
endif
|
2021-07-02 16:02:33 +02:00
|
|
|
|
|
|
|
!$OMP PARALLEL DEFAULT(NONE) &
|
|
|
|
!$OMP SHARED(hessmat,n_c_v_prov,n_a_v_prov,list_idx_c_v,list_idx_a_v) &
|
|
|
|
!$OMP PRIVATE(indx_tmp,jndx_tmp,indx,i,a,t,b,jndx)
|
|
|
|
|
|
|
|
!$OMP DO
|
|
|
|
!!!! < Core-VIRTUAL | H |Active-VIRTUAL >
|
|
|
|
! Core-VIRTUAL excitations
|
|
|
|
do indx_tmp = 1, n_c_v_prov
|
|
|
|
indx = list_idx_c_v(1,indx_tmp)
|
|
|
|
i = list_idx_c_v(2,indx_tmp)
|
|
|
|
a = list_idx_c_v(3,indx_tmp)
|
|
|
|
! Active-VIRTUAL excitations
|
|
|
|
do jndx_tmp = 1, n_a_v_prov
|
|
|
|
jndx = list_idx_a_v(1,jndx_tmp)
|
|
|
|
t = list_idx_a_v(2,jndx_tmp)
|
|
|
|
b = list_idx_a_v(3,jndx_tmp)
|
|
|
|
hessmat(jndx,indx) = hessmat_iatb(i,a,t,b)
|
|
|
|
hessmat(indx,jndx) = hessmat(jndx,indx)
|
|
|
|
enddo
|
|
|
|
enddo
|
|
|
|
!$OMP END DO NOWAIT
|
|
|
|
!$OMP END PARALLEL
|
|
|
|
|
|
|
|
|
|
|
|
!$OMP PARALLEL DEFAULT(NONE) &
|
|
|
|
!$OMP SHARED(hessmat,n_a_v_prov,list_idx_a_v,n_act_orb,n_virt_orb,mat_idx_a_v) &
|
|
|
|
!$OMP PRIVATE(indx_tmp,indx,t,a,u,b,bstart,jndx)
|
|
|
|
|
|
|
|
!$OMP DO
|
|
|
|
!!!! < Active-VIRTUAL | H |Active-VIRTUAL >
|
|
|
|
! Active-VIRTUAL excitations
|
|
|
|
do indx_tmp = 1, n_a_v_prov
|
|
|
|
indx = list_idx_a_v(1,indx_tmp)
|
|
|
|
t = list_idx_a_v(2,indx_tmp)
|
|
|
|
a = list_idx_a_v(3,indx_tmp)
|
|
|
|
! Active-VIRTUAL excitations
|
|
|
|
do u=t,n_act_orb
|
|
|
|
if (t.eq.u) then
|
|
|
|
bstart=a
|
|
|
|
else
|
|
|
|
bstart=1
|
|
|
|
end if
|
|
|
|
do b=bstart,n_virt_orb
|
|
|
|
jndx = mat_idx_a_v(u,b)
|
|
|
|
hessmat(jndx,indx) = hessmat_taub(t,a,u,b)
|
|
|
|
hessmat(indx,jndx) = hessmat(jndx,indx)
|
|
|
|
enddo
|
|
|
|
enddo
|
|
|
|
enddo
|
|
|
|
!$OMP END DO NOWAIT
|
|
|
|
!$OMP END PARALLEL
|
|
|
|
|
|
|
|
END_PROVIDER
|