#+TITLE: Quantum Monte Carlo #+AUTHOR: Anthony Scemama, Claudia Filippi #+SETUPFILE: https://fniessen.github.io/org-html-themes/org/theme-readtheorg.setup #+STARTUP: latexpreview #+STARTUP: indent * Introduction We propose different exercises to understand quantum Monte Carlo (QMC) methods. In the first section, we propose to compute the energy of a hydrogen atom using numerical integration. The goal of this section is to introduce the /local energy/. Then we introduce the variational Monte Carlo (VMC) method which computes a statistical estimate of the expectation value of the energy associated with a given wave function. Finally, we introduce the diffusion Monte Carlo (DMC) method which gives the exact energy of the H$_2$ molecule. Code examples will be given in Python and Fortran. Whatever language can be chosen. ** Python ** Fortran - 1.d0 - external - r(:) = 0.d0 - a = (/ 0.1, 0.2 /) - size(x) * Numerical evaluation of the energy In this section we consider the Hydrogen atom with the following wave function: $$ \Psi(\mathbf{r}) = \exp(-a |\mathbf{r}|) $$ We will first verify that $\Psi$ is an eigenfunction of the Hamiltonian $$ \hat{H} = \hat{T} + \hat{V} = - \frac{1}{2} \Delta - \frac{1}{|\mathbf{r}|} $$ when $a=1$, by checking that $\hat{H}\Psi(\mathbf{r}) = E\Psi(\mathbf{r})$ for all $\mathbf{r}$: we will check that the local energy, defined as $$ E_L(\mathbf{r}) = \frac{\hat{H} \Psi(\mathbf{r})}{\Psi(\mathbf{r})}, $$ is constant. ** Local energy :PROPERTIES: :header-args:python: :tangle hydrogen.py :header-args:f90: :tangle hydrogen.f90 :END: *** Write a function which computes the potential at $\mathbf{r}$ The function accepts q 3-dimensional vector =r= as input arguments and returns the potential. $\mathbf{r}=\sqrt{x^2 + y^2 + z^2})$, so $$ V(x,y,z) = -\frac{1}{\sqrt{x^2 + y^2 + z^2})$ $$ #+BEGIN_SRC python import numpy as np def potential(r): return -1. / np.sqrt(np.dot(r,r)) #+END_SRC #+BEGIN_SRC f90 double precision function potential(r) implicit none double precision, intent(in) :: r(3) potential = -1.d0 / dsqrt( r(1)*r(1) + r(2)*r(2) + r(3)*r(3) ) end function potential #+END_SRC *** Write a function which computes the wave function at $\mathbf{r}$ The function accepts a scalar =a= and a 3-dimensional vector =r= as input arguments, and returns a scalar. #+BEGIN_SRC python def psi(a, r): return np.exp(-a*np.sqrt(np.dot(r,r))) #+END_SRC #+BEGIN_SRC f90 double precision function psi(a, r) implicit none double precision, intent(in) :: a, r(3) psi = dexp(-a * dsqrt( r(1)*r(1) + r(2)*r(2) + r(3)*r(3) )) end function psi #+END_SRC *** Write a function which computes the local kinetic energy at $\mathbf{r}$ The function accepts =a= and =r= as input arguments and returns the local kinetic energy. The local kinetic energy is defined as $$-\frac{1}{2}\frac{\Delta \Psi}{\Psi}$$. $$ \Psi(x,y,z) = \exp(-a\,\sqrt{x^2 + y^2 + z^2}). $$ We differentiate $\Psi$ with respect to $x$: $$ \frac{\partial \Psi}{\partial x} = \frac{\partial \Psi}{\partial r} \frac{\partial r}{\partial x} = - \frac{a\,x}{|\mathbf{r}|} \Psi(x,y,z) $$ and we differentiate a second time: $$ \frac{\partial^2 \Psi}{\partial x^2} = \left( \frac{a^2\,x^2}{|\mathbf{r}|^2} - \frac{a(y^2+z^2)}{|\mathbf{r}|^{3}} \right) \Psi(x,y,z). $$ The Laplacian operator $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ applied to the wave function gives: $$ \Delta \Psi (x,y,z) = \left(a^2 - \frac{2a}{\mathbf{|r|}} \right) \Psi(x,y,z) $$ So the local kinetic energy is $$ -\frac{1}{2} \frac{\Delta \Psi}{\Psi} (x,y,z) = -\frac{1}{2}\left(a^2 - \frac{2a}{\mathbf{|r|}} \right) $$ #+BEGIN_SRC python def kinetic(a,r): return -0.5 * (a**2 - (2.*a)/np.sqrt(np.dot(r,r))) #+END_SRC #+BEGIN_SRC f90 double precision function kinetic(a,r) implicit none double precision, intent(in) :: a, r(3) kinetic = -0.5d0 * (a*a - (2.d0*a) / & dsqrt( r(1)*r(1) + r(2)*r(2) + r(3)*r(3) ) ) end function kinetic #+END_SRC *** Write a function which computes the local energy at $\mathbf{r}$ The function accepts =x,y,z= as input arguments and returns the local energy. $$ E_L(x,y,z) = -\frac{1}{2} \frac{\Delta \Psi}{\Psi} (x,y,z) + V(x,y,z) $$ #+BEGIN_SRC python def e_loc(a,r): return kinetic(a,r) + potential(r) #+END_SRC #+BEGIN_SRC f90 double precision function e_loc(a,r) implicit none double precision, intent(in) :: a, r(3) double precision, external :: kinetic, potential e_loc = kinetic(a,r) + potential(r) end function e_loc #+END_SRC ** Plot the local energy along the x axis :PROPERTIES: :header-args:python: :tangle plot_hydrogen.py :header-args:f90: :tangle plot_hydrogen.f90 :END: :LOGBOOK: CLOCK: [2021-01-03 Sun 17:48] :END: For multiple values of $a$ (0.1, 0.2, 0.5, 1., 1.5, 2.), plot the local energy along the $x$ axis. #+begin_src python import numpy as np import matplotlib.pyplot as plt from hydrogen import e_loc x=np.linspace(-5,5) def make_array(a): y=np.array([ e_loc(a, np.array([t,0.,0.]) ) for t in x]) return y plt.figure(figsize=(10,5)) for a in [0.1, 0.2, 0.5, 1., 1.5, 2.]: y = make_array(a) plt.plot(x,y,label=f"a={a}") plt.tight_layout() plt.legend() plt.savefig("plot_py.png") #+end_src [[./plot_py.png]] #+begin_src f90 program plot implicit none double precision, external :: e_loc double precision :: x(50), energy, dx, r(3), a(6) integer :: i, j a = (/ 0.1d0, 0.2d0, 0.5d0, 1.d0, 1.5d0, 2.d0 /) dx = 10.d0/(size(x)-1) do i=1,size(x) x(i) = -5.d0 + (i-1)*dx end do r(:) = 0.d0 do j=1,size(a) print *, '# a=', a(j) do i=1,size(x) r(1) = x(i) energy = e_loc( a(j), r ) print *, x(i), energy end do print *, '' print *, '' end do end program plot #+end_src To compile and run: #+begin_src sh :exports both gfortran hydrogen.f90 plot_hydrogen.f90 -o plot_hydrogen ./plot_hydrogen > data #+end_src #+RESULTS: To plot the data using gnuplot" #+begin_src gnuplot :file plot.png :exports both set grid set xrange [-5:5] set yrange [-2:1] plot './data' index 0 using 1:2 with lines title 'a=0.1', \ './data' index 1 using 1:2 with lines title 'a=0.2', \ './data' index 2 using 1:2 with lines title 'a=0.5', \ './data' index 3 using 1:2 with lines title 'a=1.0', \ './data' index 4 using 1:2 with lines title 'a=1.5', \ './data' index 5 using 1:2 with lines title 'a=2.0' #+end_src #+RESULTS: [[file:plot.png]] ** Compute numerically the average energy :PROPERTIES: :header-args:python: :tangle energy_hydrogen.py :header-args:f90: :tangle energy_hydrogen.f90 :END: We want to compute \begin{eqnarray} E & = & \frac{\langle \Psi| \hat{H} | \Psi\rangle}{\langle \Psi |\Psi \rangle} \\ & = & \frac{\int \Psi(\mathbf{r})\, \hat{H} \Psi(\mathbf{r})\, d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}} \\ & = & \frac{\int \left[\Psi(\mathbf{r})\right]^2\, \frac{\hat{H} \Psi(\mathbf{r})}{\Psi(\mathbf{r})}\,d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}} \end{eqnarray} If the space is discretized in small volume elements $\delta x\, \delta y\, \delta z$, this last equation corresponds to a weighted average of the local energy, where the weights are the values of the square of the wave function at $(x,y,z)$ multiplied by the volume element: $$ E \approx \frac{\sum_i w_i E_L(\mathbf{r}_i)}{\sum_i w_i}, \;\; w_i = \left[\Psi(\mathbf{r}_i)\right]^2 \delta x\, \delta y\, \delta z $$ We now compute an numerical estimate of the energy in a grid of $50\times50\times50$ points in the range $(-5,-5,-5) \le \mathbf{r} \le (5,5,5)$. Note: the energy is biased because: - The energy is evaluated only inside the box - The volume elements are not infinitely small #+BEGIN_SRC python :results output :exports both import numpy as np from hydrogen import e_loc, psi interval = np.linspace(-5,5,num=50) delta = (interval[1]-interval[0])**3 r = np.array([0.,0.,0.]) for a in [0.1, 0.2, 0.5, 0.9, 1., 1.5, 2.]: E = 0. norm = 0. for x in interval: r[0] = x for y in interval: r[1] = y for z in interval: r[2] = z w = psi(a,r) w = w * w * delta E += w * e_loc(a,r) norm += w E = E / norm print(f"a = {a} \t E = {E}") #+end_src #+RESULTS: : a = 0.1 E = -0.24518438948809218 : a = 0.2 E = -0.26966057967803525 : a = 0.5 E = -0.3856357612517407 : a = 0.9 E = -0.49435709786716214 : a = 1.0 E = -0.5 : a = 1.5 E = -0.39242967082602226 : a = 2.0 E = -0.08086980667844901 #+begin_src f90 program energy_hydrogen implicit none double precision, external :: e_loc, psi double precision :: x(50), w, delta, energy, dx, r(3), a(6), norm integer :: i, k, l, j a = (/ 0.1d0, 0.2d0, 0.5d0, 1.d0, 1.5d0, 2.d0 /) dx = 10.d0/(size(x)-1) do i=1,size(x) x(i) = -5.d0 + (i-1)*dx end do delta = dx**3 r(:) = 0.d0 do j=1,size(a) energy = 0.d0 norm = 0.d0 do i=1,size(x) r(1) = x(i) do k=1,size(x) r(2) = x(k) do l=1,size(x) r(3) = x(l) w = psi(a(j),r) w = w * w * delta energy = energy + w * e_loc(a(j), r) norm = norm + w end do end do end do energy = energy / norm print *, 'a = ', a(j), ' E = ', energy end do end program energy_hydrogen #+end_src To compile and run: #+begin_src sh :results output :exports both gfortran hydrogen.f90 energy_hydrogen.f90 -o energy_hydrogen ./energy_hydrogen #+end_src #+RESULTS: : a = 0.10000000000000001 E = -0.24518438948809140 : a = 0.20000000000000001 E = -0.26966057967803236 : a = 0.50000000000000000 E = -0.38563576125173815 : a = 1.0000000000000000 E = -0.50000000000000000 : a = 1.5000000000000000 E = -0.39242967082602065 : a = 2.0000000000000000 E = -8.0869806678448772E-002 ** Compute the variance of the local energy :PROPERTIES: :header-args:python: :tangle variance_hydrogen.py :header-args:f90: :tangle variance_hydrogen.f90 :END: The variance of the local energy measures the intensity of the fluctuations of the local energy around the average. If the local energy is constant (i.e. $\Psi$ is an eigenfunction of $\hat{H}$) the variance is zero. $$ \sigma^2(E_L) = \frac{\int \left[\Psi(\mathbf{r})\right]^2\, \left[ E_L(\mathbf{r}) - E \right]^2 \, d\mathbf{r}}{\int \left[\Psi(\mathbf{r}) \right]^2 d\mathbf{r}} $$ Compute an numerical estimate of the variance of the local energy in a grid of $50\times50\times50$ points in the range $(-5,-5,-5) \le \mathbf{r} \le (5,5,5)$. #+BEGIN_SRC python :results output :exports both import numpy as np from hydrogen import e_loc, psi interval = np.linspace(-5,5,num=50) delta = (interval[1]-interval[0])**3 r = np.array([0.,0.,0.]) for a in [0.1, 0.2, 0.5, 0.9, 1., 1.5, 2.]: E = 0. norm = 0. for x in interval: r[0] = x for y in interval: r[1] = y for z in interval: r[2] = z w = psi(a, r) w = w * w * delta El = e_loc(a, r) E += w * El norm += w E = E / norm s2 = 0. for x in interval: r[0] = x for y in interval: r[1] = y for z in interval: r[2] = z w = psi(a, r) w = w * w * delta El = e_loc(a, r) s2 += w * (El - E)**2 s2 = s2 / norm print(f"a = {a} \t E = {E:10.8f} \t \sigma^2 = {s2:10.8f}") #+end_src #+RESULTS: : a = 0.1 E = -0.24518439 \sigma^2 = 0.02696522 : a = 0.2 E = -0.26966058 \sigma^2 = 0.03719707 : a = 0.5 E = -0.38563576 \sigma^2 = 0.05318597 : a = 0.9 E = -0.49435710 \sigma^2 = 0.00577812 : a = 1.0 E = -0.50000000 \sigma^2 = 0.00000000 : a = 1.5 E = -0.39242967 \sigma^2 = 0.31449671 : a = 2.0 E = -0.08086981 \sigma^2 = 1.80688143 #+begin_src f90 program variance_hydrogen implicit none double precision, external :: e_loc, psi double precision :: x(50), w, delta, energy, dx, r(3), a(6), norm, s2 integer :: i, k, l, j a = (/ 0.1d0, 0.2d0, 0.5d0, 1.d0, 1.5d0, 2.d0 /) dx = 10.d0/(size(x)-1) do i=1,size(x) x(i) = -5.d0 + (i-1)*dx end do delta = dx**3 r(:) = 0.d0 do j=1,size(a) energy = 0.d0 norm = 0.d0 do i=1,size(x) r(1) = x(i) do k=1,size(x) r(2) = x(k) do l=1,size(x) r(3) = x(l) w = psi(a(j),r) w = w * w * delta energy = energy + w * e_loc(a(j), r) norm = norm + w end do end do end do energy = energy / norm s2 = 0.d0 norm = 0.d0 do i=1,size(x) r(1) = x(i) do k=1,size(x) r(2) = x(k) do l=1,size(x) r(3) = x(l) w = psi(a(j),r) w = w * w * delta s2 = s2 + w * ( e_loc(a(j), r) - energy )**2 norm = norm + w end do end do end do s2 = s2 / norm print *, 'a = ', a(j), ' E = ', energy, ' s2 = ', s2 end do end program variance_hydrogen #+end_src To compile and run: #+begin_src sh :results output :exports both gfortran hydrogen.f90 variance_hydrogen.f90 -o variance_hydrogen ./variance_hydrogen #+end_src #+RESULTS: : a = 0.10000000000000001 E = -0.24518438948809140 s2 = 2.6965218719733813E-002 : a = 0.20000000000000001 E = -0.26966057967803236 s2 = 3.7197072370217653E-002 : a = 0.50000000000000000 E = -0.38563576125173815 s2 = 5.3185967578488862E-002 : a = 1.0000000000000000 E = -0.50000000000000000 s2 = 0.0000000000000000 : a = 1.5000000000000000 E = -0.39242967082602065 s2 = 0.31449670909180444 : a = 2.0000000000000000 E = -8.0869806678448772E-002 s2 = 1.8068814270851303 * Variational Monte Carlo Instead of computing the average energy as a numerical integration on a grid, we will do a Monte Carlo sampling, which is an extremely efficient method to compute integrals in large dimensions. Moreover, a Monte Carlo sampling will alow us to remove the bias due to the discretization of space, and compute a statistical confidence interval. ** Computation of the statistical error To compute the statistical error, you need to perform $M$ independent Monte Carlo calculations. You will obtain $M$ different estimates of the energy, which are expected to have a Gaussian distribution by the central limit theorem. The estimate of the energy is $$ E = \frac{1}{M} \sum_{i=1}^M E_M $$ The variance of the average energies can be computed as $$ \sigma^2 = \frac{1}{M-1} \sum_{i=1}^{M} (E_M - E)^2 $$ And the confidence interval is given by $$ E \pm \delta E, \text{ where } \delta E = \frac{\sigma}{\sqrt{M}} $$ Write a function returning the average and statistical error of an input array. #+BEGIN_SRC python :results output def ave_error(arr): M = len(arr) assert (M>1) average = sum(arr)/M variance = 1./(M-1) * sum( [ (x - average)**2 for x in arr ] ) return (average, sqrt(variance/M)) #+END_SRC #+RESULTS: ** Uniform sampling in the box Write a function to perform a Monte Carlo calculation of the average energy. At every Monte Carlo step, - Draw 3 uniform random numbers in the interval $(-5,-5,-5) \le (x,y,z) \le (5,5,5)$ - Compute $\Psi^2 \times E_L$ at this point and accumulate the result in E - Compute $\Psi^2$ at this point and accumulate the result in N Once all the steps have been computed, return the average energy computed on the Monte Carlo calculation. Then, write a loop to perform 30 Monte Carlo runs, and compute the average energy and the associated statistical error. Compute the energy of the wave function with $a=0.9$. #+BEGIN_SRC python def MonteCarlo(a, nmax): E = 0. N = 0. for istep in range(nmax): r = np.random.uniform(-5., 5., (3)) w = psi(a,r) w = w*w N += w E += w * e_loc(a,r) return E/N #+END_SRC #+BEGIN_SRC python a = 0.9 nmax = 100000 X = [MonteCarlo(a,nmax) for i in range(30)] E, deltaE = ave_error(X) print(f"E = {E} +/- {deltaE}") #+END_SRC #+RESULTS: : E = -0.4952626284319677 +/- 0.0006877988969872546 ** Gaussian sampling We will now improve the sampling and allow to sample in the whole 3D space, correcting the bias related to the sampling in the box. Instead of drawing uniform random numbers, we will draw Gaussian random numbers centered on 0 and with a variance of 1. Now the equation for the energy is changed into \[ E = \frac{\int P(\mathbf{r}) \frac{\left[\Psi(\mathbf{r})\right]^2}{P(\mathbf{r})}\, \frac{\hat{H} \Psi(\mathbf{r})}{\Psi(\mathbf{r})}\,d\mathbf{r}}{\int P(\mathbf{r}) \frac{\left[\Psi(\mathbf{r}) \right]^2}{P(\mathbf{r})} d\mathbf{r}} \] with \[ P(\mathbf{r}) = \frac{1}{(2 \pi)^{3/2}}\exp\left( -\frac{\mathbf{r}^2}{2} \right) \] As the coordinates are drawn with probability $P(\mathbf{r})$, the average energy can be computed as $$ E \approx \frac{\sum_i w_i E_L(\mathbf{r}_i)}{\sum_i w_i}, \;\; w_i = \frac{\left[\Psi(\mathbf{r}_i)\right]^2}{P(\mathbf{r})} \delta x\, \delta y\, \delta z $$ #+BEGIN_SRC python norm_gauss = 1./(2.*np.pi)**(1.5) def gaussian(r): return norm_gauss * np.exp(-np.dot(r,r)*0.5) #+END_SRC #+RESULTS: #+BEGIN_SRC python def MonteCarlo(a,nmax): E = 0. N = 0. for istep in range(nmax): r = np.random.normal(loc=0., scale=1.0, size=(3)) w = psi(a,r) w = w*w / gaussian(r) N += w E += w * e_loc(a,r) return E/N #+END_SRC #+RESULTS: #+BEGIN_SRC python :results output a = 0.9 nmax = 100000 X = [MonteCarlo(a,nmax) for i in range(30)] E, deltaE = ave_error(X) print(f"E = {E} +/- {deltaE}") #+END_SRC #+RESULTS: : E = -0.4952488228427792 +/- 0.00011913174676540714 ** Sampling with $\Psi^2$ We will now use the square of the wave function to make the sampling: \[ P(\mathbf{r}) = \left[\Psi(\mathbf{r})\right]^2 \] Now, the expression for the energy will be simplified to the average of the local energies, each with a weight of 1. $$ E \approx \frac{1}{M}\sum_{i=1}^M E_L(\mathbf{r}_i)} $$ To generate the probability density $\Psi^2$, we can use a drifted diffusion scheme: \[ \mathbf{r}_{n+1} = \mathbf{r}_{n} + \tau \frac{\nabla \Psi(r)}{\Psi(r)} + \eta \sqrt{\tau} \] where $\eta$ is a normally-distributed Gaussian random number. First, write a function to compute the drift vector $\frac{\nabla \Psi(\mathbf{r})}{\Psi(\mathbf{r})}$. #+BEGIN_SRC python def drift(a,r): ar_inv = -a/np.sqrt(np.dot(r,r)) return r * ar_inv #+END_SRC #+RESULTS: #+BEGIN_SRC python def MonteCarlo(a,tau,nmax): E = 0. N = 0. sq_tau = sqrt(tau) r_old = np.random.normal(loc=0., scale=1.0, size=(3)) d_old = drift(a,r_old) d2_old = np.dot(d_old,d_old) psi_old = psi(a,r_old) for istep in range(nmax): eta = np.random.normal(loc=0., scale=1.0, size=(3)) r_new = r_old + tau * d_old + sq_tau * eta d_new = drift(a,r_new) d2_new = np.dot(d_new,d_new) psi_new = psi(a,r_new) # Metropolis prod = np.dot((d_new + d_old), (r_new - r_old)) argexpo = 0.5 * (d2_new - d2_old)*tau + prod q = psi_new / psi_old q = np.exp(-argexpo) * q*q if np.random.uniform() < q: r_old = r_new d_old = d_new d2_old = d2_new psi_old = psi_new N += 1. E += e_loc(a,r_old) return E/N #+END_SRC #+RESULTS: #+BEGIN_SRC python :results output nmax = 100000 tau = 0.1 X = [MonteCarlo(a,tau,nmax) for i in range(30)] E, deltaE = ave_error(X) print(f"E = {E} +/- {deltaE}") #+END_SRC #+RESULTS: : E = -0.4951783346213532 +/- 0.00022067316984271938 * Diffusion Monte Carlo We will now consider the H_2 molecule in a minimal basis composed of the $1s$ orbitals of the hydrogen atoms: $$ \Psi(\mathbf{r}_1, \mathbf{r}_2) = \exp(-(\mathbf{r}_1 - \mathbf{R}_A)) + $$ where $\mathbf{r}_1$ and $\mathbf{r}_2$ denote the electron coordinates and \mathbf{R}_A$ and $\mathbf{R}_B$ the coordinates of the nuclei.