
kc

mc

nr

kc

L3 Cache

L1 Cache

mr nrmr

nr

1

1

L2 Cache

Register

nr

kc

kc

mc kc

nc

Fig. 3. Packed data storage for GEBP in GotoBLAS.

register

L1 cache

L2 cache

L3 cache

RAM

Level 0

Level 1

Level 2

Level 3

Level 4

fast

slow

Fig. 4. The memory hierarchy in the ARMv8 architecture.

time, denoted ! , of a program can be estimated as:

! = "#+
∑

!

∑

"

$!"%!" +
∑

!

∑

"

&!"'!" (1)

where " , $!" , and &!" represent the number of operations,
words, and messages, respectively. For example, $10 denotes
the number of words loaded from the L1 cache to registers.

Given the packed data stored contiguously in slow memory,
as shown at layer 4 in Figure 2, we assume that all the words
in a message are needed in consecutive computations, i.e.,
that they can be read or written together as one message (one
cache line). Hence, the ratio of the number of moved messages
to that of moved words is nearly a constant:

∑
!

∑
"&!" ≃

(
∑
!

∑
"$!" . Since %!" ≥ 0and '!" ≥ 0, we have:

! ≤ "#+ (1 + ()
∑

!

∑

"

$!" × (
∑

!

∑

"

%!" +
∑

!

∑

"

'!")

For convenience, we let) =
∑
!

∑
" %!" +

∑
!

∑
" '!" and

$ =
∑
!

∑
"$!" . Then the compute-to-memory access ratio,

denoted *, for the program can be expressed as:

* =
"

$
=

"∑
!

∑
"$!"

(2)

Then we can obtain:

! ≤ "#+ (1 + ()$) (3)

Since overlapping computation and communication is an im-
portant and necessary optimization for improving performance,
we propose a so-called overlapping factor as a function +(*)
of *. Using this overlapping factor, we can refine (3) into:

!#$% ≤ "#+ (1 + ()$)+(*) (4)

Note that +(*)→ 1 if * → 0and +(*)→ 0if * → +∞. In
addition, +(*) is typically a monotonically decreasing function
with respect to *. By (2), we have:

!#$% ≤ " (#+ (1 + ())
+(*)

*
) (5)

Finally, we obtain the following lower bound on the perfor-
mance of a DGEMM implementation:

,-./#$% =
"

!#$%
≥ 1

(#+ (1 + ())&(')')
(6)

which indicates clearly that larger compute-to-memory ratios
* lead always to better peak performance (efficiency).

IV. FAST IMPLEMENTATION

Based on our performance model, we obtain a highly
efficient implementation of DGEMM for the 64-bit ARMv8
architecture by developing systematically a highly-optimized
GEBP kernel in assembly. As illustrated in Figure 2, GEBP
comprises layers 4 – 7. Its development involves implementing
each rank-1 update performed at layer 7 (referred to as the
register kernel in Section II-C) and determining various block
sizes used across the four layers. We will describe our GEBP
implementation inside out from layer 7 (the register kernel) to
layer 4, i.e., across the four levels of the memory hierarchy
in the ARMv8 architecture, starting from the fastest to the
slowest. Thus, some block sizes determined at a level will be
used later to determine other block sizes at a lower level.

When developing a highly-optimized GEBP, the main
challenge lies in choosing the right register block size for
its register kernel. We make such a choice analytically with
the goal of maximizing its compute-to-memory access ratio
from the L1 data cache to registers. In order to realize the
optimal ratio thus found, we optimize the operations in the
register kernel by (1) exploiting loop unrolling, instruction
scheduling and software-implemented register rotation and (2)
taking advantage of A64 instructions to support efficient FMA
operations, data transfer and data prefetching. Subsequently,
we optimize GEBP by maximizing its compute-to-memory
access ratios across all three levels of cache memories. We
do so by determining analytically the other block sizes used,
considering set associativities and replacement policies.

In Section IV-A, we describe how to determine the register
block size 0(×1(for the register kernel, together with asso-
ciated optimizations. In Section IV-B, we find the block sizes
2), 0) and 1) corresponding to layers 6, 5 and 4, respectively.
As shown in Figure 3, 2), 0) and 1) are determined by the
L1, L2 and L3 caches used, respectively. In addition, we also
determine how to insert prefetching instructions to prefetch
data into the L1 data cache in order to accelerate further the
operations in the register kernel. In Section IV-C, we adjust
the block sizes 0) and 1) when moving from a serial to a
parallel implementation due to cache sharing.

204203203203203203

