Compute pi python

This commit is contained in:
Anthony Scemama 2021-11-20 16:21:30 +01:00
parent a96c2ae6cb
commit 69ca8512da
7 changed files with 457 additions and 127 deletions

BIN
fork.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 48 KiB

View File

@ -8,7 +8,6 @@
#+BEAMER_THEME: trex
#+LaTeX_HEADER: \usepackage{minted}
#+LaTeX_HEADER: \usemintedstyle{emacs}
#+LaTeX_HEADER: \newminted{f90}{fontsize=\footnotesize}
#+LaTeX_HEADER: \usepackage[utf8]{inputenc}
#+LaTeX_HEADER: \usepackage[T1]{fontenc}
#+LaTeX_HEADER: \usepackage{hyperref}
@ -23,48 +22,26 @@
#+startup: beamer
#+options: H:2
* Program :noexport:
* Program NOEXPORT :noexport:
** Mardi apres-midi
Je peux leur faire
- paralleliser un produit de matrices avec OpenMP en Fortran/C
- calculer pi avec un algorithme Monte Carlo avec MPI (Master-Worker) d'abord en Python puis en Fortran/C.
- calculer une integrale dans R^3 sur une grille de points avec MPI en Fortran/C.
Ca va juste leur donner les bases avec OMP DO et MPI_Reduce, et on ne pourra pas
aller beaucoup plus loin. Mais ils pourront quand meme faire tourner les 112
coeurs du cluster.
Attention: il faut aussi prevoir qu'ils n'auront peut-etre jamais utilise un
cluster, et ils ne savent probablement pas ce que c'est. Donc je vais devoir
inclure un peu de hardware dans ma presentation sur le parallelisme et leur
expliquer qu'il faut faire sbatch pour lancer un calcul.
C'est bien slurm to gestionnaire de batch?
** Mercredi
14:00-14:30 : Supercomputers
14:30-15:30 : Parallelism
15:45-17:30 : OpenMP/MPI
09:00-10:30 : Presentation IRP + QP
Pour IRPF90, je peux faire une presentation assez generale.
10:30-12:00 : TP IRPF90
J'ai deja un tutoriel pour ecrire un programme de dynamique moleculaire avec un
potentiel Lennard-Jones, je pense que ce sera plus facile puisqu'il n'y a pas
beaucoup de temps pour faire les TPs.
Si ils vont suffisamment vite, on peut ensuite basculer sur la parallelisation
OpenMP des boucles dans le code, et sur le lancement de plusieurs trajectoires
avec MPI en reprenant le modele de parallelisation de pi de la veille.
13:45-17:00 : TP Parallel
- calculer pi avec un algorithme Monte Carlo avec MPI (Master-Worker) d'abord en Python puis en Fortran/C.
- paralleliser un produit de matrices avec OpenMP en Fortran/C
- calculer une integrale dans R^3 sur une grille de points avec MPI en Fortran/C.
Pour QP, je me dis que ce serait bien de le le presenter en 15 minutes une fois
qu'ils ont fait le TP sur IRPF90. Ensuite on peut leur faire une demo sur comment
implementer un SCF en 10 minutes, mais je ne pense pas qu'on aura le temps de
leur faire faire le travail dans QP, et ca simplifie les problemes de
compilation sur les machines. On peut aussi leur donner acces au compte ou QP
est installe pour ceux qui vont tres vite et qui veulent essayer de jouer avec.
* Supercomputers
* Supercomputers :noexport:
** Computers
@ -271,9 +248,7 @@
- Software stack is not as mature as the CPU stack $\Longrightarrow$
needs hacking to get performance
* Fundamentals of parallelization
* Fundamentals of parallelization :noexport:
** Introduction
@ -292,14 +267,87 @@
All levels of parallelism can be exploited in the same code,
but every problem is not parallelizable at all levels.
** Amdahl's law
*** Definition
If P is the proportion of a program that can be made parallel, the maximum speedup
that can be achieved is:
#+LATEX: \begin{columns}
#+LATEX: \begin{column}{0.1\textwidth}
\[
S_{\max} = \frac{1}{(1-P)+P/n}
\]
#+LATEX: \end{column}
#+LATEX: \begin{column}{0.8\textwidth}
- $S$ :: : Speedup
- $P$ :: : Proportion of a program that can be made parallel
- $n$ :: : Number of cores
#+LATEX: \end{column}
#+LATEX: \end{columns}
*** Example
#+LATEX: \begin{columns}
#+LATEX: \begin{column}{0.4\textwidth}
#+ATTR_LATEX: :width 0.8 \textwidth
[[./Amdahl2.pdf]]
#+LATEX: \end{column}
#+LATEX: \begin{column}{0.6\textwidth}
- Max speedup : 100$\times$
- Perfect scaling needs *all* the program to be parallelized (difficult)
#+LATEX: \end{column}
#+LATEX: \end{columns}
** Outline
1. Compute a PES with GNU parallel (Bash)
2. Compute $\pi$ with a Monte Carlo algorithm (Python, sockets)
3. Compute $\pi$ with a deterministic algorithm (Python, MPI)
4. Matrix multiplication (Fortran, OpenMP)
1. Human parallel machine
2. Compute a PES with GNU parallel (Bash)
3. Compute $\pi$ with a Monte Carlo algorithm (Python, sockets)
4. Compute $\pi$ with a deterministic algorithm (Python, MPI)
5. Matrix multiplication (Fortran, OpenMP)
** Problem 1: Potential energy surface
** Experiment
*** The Human Parallel Machine
- Sort a deck of cards
- Do it as fast as you can
- I did it alone in 5'25'' (325 seconds)
- Each one of you is a /human compute node/
- How fast can all of you sort the same deck?
** Disappointing result
You were many more people than me, but you didn't go many times faster !
$\Longrightarrow$ Try the Merge sort
** Merge sort
#+ATTR_LATEX: :height 0.9\textheight
[[file:merge.png]]
** Merge sort
#+ATTR_LATEX: :height 0.9\textheight
[[file:merge_parallel.png]]
** Better, but still not perfect
- Moving the cards around the room takes time (communication)
- Sorting the sub-piles is super-fast (computation)
Algorithm is *bounded by communication* : Difficult to scale
#+LATEX: \begin{exampleblock}{If the assignment was}
- Consider the function $f(a,b,x) = a\,x^5 - \frac{b\,x^3}{a}$
- Each card has a value for $a$, $b$ and $x$
- Evaluate $f(a,b,x)$ for each card and write the result on the card
- Sort the results
#+LATEX: \end{exampleblock}
Same communication pattern, but more computational effort $\Longrightarrow$ better scaling.
#+LATEX: \begin{alertblock}{Take-home messages}
- Parallel workloads may require different algorithms than scalar workloads
- Difficulty is /data movement/ (communication), not /computation/
#+LATEX: \end{alertblock}
* Embarrassingly parallel computations :noexport:
** Example: Potential energy surface
We want to create the CCSD(T) potential energy surface of the water molecule.
#+LATEX: \begin{columns}
@ -311,7 +359,7 @@ but every problem is not parallelizable at all levels.
#+LATEX: \end{column}
#+LATEX: \end{columns}
** Problem 1: Potential energy surface
** Example: Potential energy surface
*** Constraints
- We want to compute $25 \times 25 \times 25 = 15~625$ points
@ -323,7 +371,7 @@ but every problem is not parallelizable at all levels.
- The grid points are completely independent
- Any CPU core can calculate any point
** Problem 1: Potential energy surface
** Example: Potential energy surface
*** Optimal solution: /work stealing/
- One grid point is $E(r_1,r_2,\theta)$
@ -362,7 +410,6 @@ B C
B D
#+end_src
** GNU parallel
If no command is given after parallel the arguments are treated as commands:
@ -461,7 +508,6 @@ $ g09 < input | grep "^ CCSD(T)=" | cut -d "=" -f 2
-0.76329294074D+02
#+end_src
** Computing the CCSD(T) surface
*2. Script =run_h2o.sh= that takes $r_1$, $r_2$ and $\theta$ as arguments*
@ -599,85 +645,376 @@ user 0m3.359s
sys 0m3.172s
#+end_src
** Amdahl's law
* Inter-process communication
** Processes /vs/ threads
*** Process
- Has its own memory address space
- Context switching between processes is slow
- Processes interact only through system-provided communication mechanisms
- Fork: creates a copy of the current process
- Exec: switches to running another binary executable
- Spawn: =Fork=, then =exec= the child
*** Thread
- Exist as subsets of a process
- Context switching between threads is fast
- Share the same memory address space : interact via shared memory
** Inter-process communication
- Processes exchange data via read/write on /File descriptors/
- These file descriptors can point to:
- Files on disk: Simplest choice
- Named Pipes: Same program as with files
- Pipes: Same behavior as files
- Network sockets
** Named pipes
A named pipe is a *virtual* file which is read by a process and
written by other processes. It allows processes to communicate using
standard I/O operations:
#+ATTR_LATEX: :height 0.7\textheight
[[./pipe.png]]
** Example
#+LATEX: \begin{columns}
#+LATEX: \begin{column}{0.5\textwidth}
#+ATTR_LATEX: :height 0.8\textheight
[[./pipe_example.png]]
#+LATEX: \end{column}
#+LATEX: \begin{column}{0.5\textwidth}
- Unzip =input.gz=
- Sort the unzipped file
- Zip the result into =output.gz=
Same as
#+begin_src bash
$ gunzip --to-stdout input.gz \
| sort \
| gzip > output.gz
#+end_src
#+LATEX: \end{column}
#+LATEX: \end{columns}
** Example: Program 1
#+LATEX: \begin{columns}
#+LATEX: \begin{column}{0.5\textwidth}
#+begin_src bash
#!/bin/bash
# Create two pipes using the mkfifo command
mkfifo /tmp/pipe /tmp/pipe2
# Unzip the input file and write the result
# in the 1st pipe
echo "Run gunzip"
gunzip --to-stdout input.gz > /tmp/pipe
# Zip what comes from the second pipe
echo "Run gzip"
gzip < /tmp/pipe2 > output.gz
# Clear the pipes in the filesystem
rm /tmp/pipe /tmp/pipe2
#+end_src
#+LATEX: \end{column}
#+LATEX: \begin{column}{0.5\textwidth}
#+begin_src bash
#!/bin/bash
# Read the 1st pipe, sort the result and write
# in the 2nd pipe
echo "Run sort"
sort < /tmp/pipe > /tmp/pipe2
#+end_src
#+LATEX: \begin{exampleblock}{Execution}
#+begin_src text
$ ./p1.sh &
Run gunzip
$ ./p2.sh
Run sort
Run gzip
[1]+ Done
./p1.sh
#+end_src
#+LATEX: \end{exampleblock}
#+LATEX: \end{column}
#+LATEX: \end{columns}
** Pipe
#+LATEX: \begin{columns}
#+LATEX: \begin{column}{0.6\textwidth}
*Fork* : Copy the current process
Pipes don't have an entry on the file system, and are opened/closed in the programs.
1. Create the pipe
2. Fork in parent/child processes
3. Exchange data between parent and child
#+LATEX: \end{column}
#+LATEX: \begin{column}{0.4\textwidth}
[[./fork.png]]
#+LATEX: \end{column}
#+LATEX: \end{columns}
** Pipe
#+LATEX: \begin{columns}
#+LATEX: \begin{column}{0.6\textwidth}
#+begin_src python :tangle Codes/fork.py
#!/usr/bin/env python
import sys,os
def main():
print("Process ID: %d" % (os.getpid()))
r, w = os.pipe()
new_pid = os.fork()
if new_pid != 0: # This is the parent process
print("I am the parent, my PID is %d"%(os.getpid()))
print("and the PID of my child is %d"%(new_pid))
# Close write and open read file descriptors
os.close(w)
r = os.fdopen(r,'r')
# Read data from the child
print("Reading from the child")
s = r.read()
r.close()
print("Read '%s' from the child"%(s))
#+end_src
#+LATEX: \end{column}
#+LATEX: \begin{column}{0.4\textwidth}
[[./fork.png]]
#+LATEX: \end{column}
#+LATEX: \end{columns}
** Pipe
#+LATEX: \begin{columns}
#+LATEX: \begin{column}{0.6\textwidth}
#+begin_src python :tangle Codes/fork.py
else: # This is the child process
print(" I am the child, my PID is %d"%(os.getpid()))
# Close read and open write file descriptors
os.close(r)
w = os.fdopen(w,'w')
# Send 'Hello' to the parent
print(" Sending 'Hello' to the parent")
w.write( "Hello!" )
w.close()
print(" Sent 'Hello'")
if __name__ == "__main__":
main()
#+end_src
#+LATEX: \end{column}
#+LATEX: \begin{column}{0.4\textwidth}
[[./fork.png]]
#+LATEX: \end{column}
#+LATEX: \end{columns}
** Computation of $\pi$
#+LATEX: \begin{columns}
#+LATEX: \begin{column}{0.4\textwidth}
#+ATTR_LATEX: width=0.9\textwidth
[[./pi.png]]
#+LATEX: \end{column}
#+LATEX: \begin{column}{0.6\textwidth}
- The surface of the circle is $\pi r^2$ $\Longrightarrow$ For a unit circle, the
surface is $\pi$
- The function in the red square is $y = \sqrt{1-x^2}$ (the circle is $\sqrt{x^2 + y^2} = 1$)
- The surface in grey corresponds to \[ \int_0^1 \sqrt{1-x^2} dx = \frac{\pi}{4} \]
#+LATEX: \end{column}
#+LATEX: \end{columns}
** Monte Carlo computation of $\pi$
#+LATEX: \begin{columns}
#+LATEX: \begin{column}{0.4\textwidth}
#+ATTR_LATEX: width=0.9\textwidth
[[./pi_mc.png]]
#+LATEX: \end{column}
#+LATEX: \begin{column}{0.6\textwidth}
- Points $(x,y)$ are drawn randomly in the unit square
- Count how many times the points are inside the circle
\[
\frac{N_{\text{in}}}{N_{\text{in}}+N_{\text{out}}} = \frac{\pi}{4}
\]
#+LATEX: \end{column}
#+LATEX: \end{columns}
** Optimal algorithm
- Each core $1 \le i \le M$ computes its own average $X_i$
- All $M$ results are independent $\Longrightarrow$
Gaussian-distributed random variables (central-limit theorem)
#+ATTR_LATEX: :height 0.6\textheight
[[./pi_convergence.png]]
** Computation of $\pi$ with pipes in Python
#+begin_src python :tangle Codes/pi_python.py
import os, sys
from random import random, seed
from math import sqrt
NMAX = 10000000 # Nb of MC steps/process
error_threshold = 1.0e-4 # Stopping criterion
NPROC=4 # Use 4 processes
def compute_pi():
"""Local Monte Carlo calculation of pi"""
seed(None) # Initialize random number generator
*** Definition
If P is the proportion of a program that can be made parallel, the maximum speedup
that can be achieved is:
#+LATEX: \begin{columns}
#+LATEX: \begin{column}{0.1\textwidth}
\[
S_{\max} = \frac{1}{(1-P)+P/n}
\]
#+LATEX: \end{column}
#+LATEX: \begin{column}{0.8\textwidth}
- $S$ :: : Speedup
- $P$ :: : Proportion of a program that can be made parallel
- $n$ :: : Number of cores
#+LATEX: \end{column}
#+LATEX: \end{columns}
result = 0.
for i in range(NMAX): # Loop NMAX times
x,y = random(), random() # Draw 2 random numbers x and y
if x*x + y*y <= 1.: # Check if (x,y) is in the circle
result += 1
return 4.* float(result)/float(NMAX) # Estimate of pi
#+end_src
*** Example
** Computation of $\pi$ with pipes in Python
#+LATEX: \begin{columns}
#+LATEX: \begin{column}{0.4\textwidth}
#+ATTR_LATEX: :width 0.8 \textwidth
[[./Amdahl2.pdf]]
#+LATEX: \end{column}
#+LATEX: \begin{column}{0.6\textwidth}
- Max speedup : 100$\times$
- Perfect scaling needs *all* the program to be parallelized (difficult)
#+LATEX: \end{column}
#+LATEX: \end{columns}
** Experiment
*** The Human Parallel Machine
- Sort a deck of cards
- Do it as fast as you can
- I did it alone in 5'25'' (325 seconds)
- Each one of you is a /human compute node/
- How fast can all of you sort the same deck?
** Disappointing result
You were many more people than me, but you didn't go many times faster !
$\Longrightarrow$ Try the Merge sort
** Merge sort
#+ATTR_LATEX: :height 0.9\textheight
[[file:merge.png]]
** Merge sort
#+ATTR_LATEX: :height 0.9\textheight
[[file:merge_parallel.png]]
** Better, but still not perfect
- Moving the cards around the room takes time (communication)
- Sorting the sub-piles is super-fast (computation)
Algorithm is *bounded by communication* : Difficult to scale
#+LATEX: \begin{exampleblock}{If the assignment was}
- Consider the function $f(a,b,x) = a\,x^5 - \frac{b\,x^3}{a}$
- Each card has a value for $a$, $b$ and $x$
- Evaluate $f(a,b,x)$ for each card and write the result on the card
- Sort the results
#+LATEX: \end{exampleblock}
Same communication pattern, but more computational effort $\Longrightarrow$ better scaling.
#+LATEX: \begin{alertblock}{Important}
Difficulty is /data movement/ (communication), not /computation/
#+LATEX: \end{alertblock}
#+begin_src python :tangle Codes/pi_python.py
def main():
r = [None]*NPROC # Reading edges of the pipes
pid = [None]*NPROC # Running processes
for i in range(NPROC):
r[i], w = os.pipe() # Create the pipe
pid[i] = os.fork() # Fork and save the PIDs
if pid[i] != 0: # This is the parent process
os.close(w)
r[i] = os.fdopen(r[i],'r')
else: # This is the child process
os.close(r[i])
w = os.fdopen(w,'w')
while True: # Compute pi on this process
X = compute_pi()
try:
w.write("%f\n"%(X)) # Write the result in the pipe
w.flush()
except IOError: # Child process exits here
sys.exit(0)
#+end_src
** Data movement
** Computation of $\pi$ with pipes in Python
* OpenMP
#+begin_src python :tangle Codes/pi_python.py
data = []
while True:
for i in range(NPROC): # Read in the pipe of each process
data.append( float(r[i].readline()) )
N = len(data)
average = sum(data)/N # Compute average
if N > 2: # Compute variance
l = [ (x-average)*(x-average) for x in data ]
variance = sum(l)/(N-1.)
else:
variance = 0.
error = sqrt(variance)/sqrt(N) # Compute error
print(f"%{average} +/- %{error} %{N}")
if N > 2 and error < error_threshold: # Stopping condition
for i in range(NPROC): # Kill all children
try: os.kill(pid[i],9)
except: pass
sys.exit(0)
if __name__ == '__main__': main()
#+end_src
* Message Passing Interface (MPI)
* OpenMP
* Exercises
** Monte Carlo
1. Write a Fortran src_fortran{double precision function compute_pi(M)} that computes
$\pi$ with the Monte Carlo algorithm using $M$ samples
2. Call it like this:
#+begin_src fortran
program pi_mc
implicit none
integer :: M
logical :: iterate
double precision :: sample
double precision, external :: compute_pi
call random_seed() ! Initialize random number generator
read (*,*) M ! Read number of samples in compute_pi
iterate = .True.
do while (iterate) ! Compute pi over N samples until 'iterate=.False.'
sample = compute_pi(M)
write(*,*) sample
read (*,*) iterate
end do
end program pi_mc
#+end_src
** Monte Carlo
3. Write a Fortran src_fortran{double precision function compute_pi(M)} that computes
$\pi$ with the Monte Carlo algorithm using $M$ samples
#+begin_src fortran
program pi_mc
implicit none
integer :: M
logical :: iterate
double precision :: sample
double precision, external :: compute_pi
call random_seed() ! Initialize random number generator
read (*,*) M ! Read number of samples in compute_pi
iterate = .True.
do while (iterate) ! Compute pi over N samples until 'iterate=.False.'
sample = compute_pi(M)
write(*,*) sample
read (*,*) iterate
end do
end program pi_mc
#+end_src
** Monte Carlo (solution)
#+begin_src fortran
double precision function compute_pi(M)
implicit none
integer, intent(in) :: M
double precision :: x, y, n_in
integer :: i
n_in = 0.d0
do i=1, M
call random_number(x)
call random_number(y)
if (x*x + y*y <= 1.d0) then
n_in = n_in+1.d0
end if
end do
compute_pi = 4.d0*n_in/dble(nmax)
end function compute_pi
#+end_src
* Figures :noexport:
#+BEGIN_SRC dot :output file :file merge.png
@ -832,7 +1169,7 @@ digraph G {
in parallel?
a)
#+begin_src f90
#+begin_src fortran
!$OMP PARALLEL DO PRIVATE(i,j,k) SHARED(A,B,C)
do j=1,n
do i=1,n
@ -845,7 +1182,7 @@ digraph G {
#+end_src
b)
#+begin_src f90
#+begin_src fortran
!$OMP PARALLEL PRIVATE(i,j,k) SHARED(A,B,C)
!$OMP DO
do j=1,n
@ -860,7 +1197,7 @@ digraph G {
#+end_src
c)
#+begin_src f90
#+begin_src fortran
!$OMP PARALLEL PRIVATE(i,j,k) SHARED(A,B,C)
do j=1,n
!$OMP DO
@ -875,7 +1212,7 @@ digraph G {
#+end_src
d)
#+begin_src f90
#+begin_src fortran
!$OMP PARALLEL PRIVATE(i,j,k) SHARED(A,B,C)
do j=1,n
do i=1,n
@ -895,11 +1232,7 @@ digraph G {
* Export :noexport:
#+BEGIN_SRC elisp :output none
(setq org-latex-listings 'minted)
(setq org-latex-custom-lang-environments
'(
(f90 "fortran")
))
(setq org-latex-custom-lang-environments nil)
(setq org-latex-minted-options
'(("frame" "lines")
("fontsize" "\\scriptsize")
@ -913,6 +1246,3 @@ digraph G {
#+RESULTS:
: /home/scemama/MEGA/TEX/Cours/TCCM/TCCM2022/Parallelism/parallelism_scemama.pdf

BIN
pi.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 10 KiB

BIN
pi_convergence.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 94 KiB

BIN
pi_mc.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 142 KiB

BIN
pipe.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 17 KiB

BIN
pipe_example.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 27 KiB