{ "cells": [ { "cell_type": "markdown", "metadata": { "heading_collapsed": true }, "source": [ "# Installation de QCaml" ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "1. Clonage de QCaml:\n", " ```bash\n", " git clone https://gitlab.com/scemama/QCaml.git\n", " ```\n", "2. Installation des dependances:\n", " ```bash\n", " opam install ocamlbuild ocamlfind lacaml gnuplot getopt alcotest zarith\n", " cd QCaml\n", " ./configure\n", " ```\n", "3. Compilation\n", " ```bash\n", " make\n", " ```" ] }, { "cell_type": "markdown", "metadata": { "heading_collapsed": true }, "source": [ "# Initialisation" ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "Bloc a executer avant de pouvoir utiliser QCaml dans le Notebook" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "let png_image = print_endline ;;\n", "\n", "(* --------- *)\n", "\n", "(*Mettre le bon chemin ici *)\n", "#cd \"/home/ydamour/QCaml\";;\n", "\n", "#use \"topfind\";;\n", "#require \"jupyter.notebook\";;\n", "\n", "#require \"gnuplot\";;\n", "let png_image name = \n", " Jupyter_notebook.display_file ~base64:true \"image/png\" (name)\n", ";;\n", "\n", "#require \"lacaml.top\";;\n", "#require \"alcotest\";;\n", "#require \"str\";;\n", "#require \"bigarray\";;\n", "#require \"zarith\";;\n", "#require \"getopt\";;\n", "#directory \"_build\";;\n", "#directory \"_build/Basis\";;\n", "#directory \"_build/CI\";;\n", "#directory \"_build/MOBasis\";;\n", "#directory \"_build/Nuclei\";;\n", "#directory \"_build/Parallel\";;\n", "#directory \"_build/Perturbation\";;\n", "#directory \"_build/SCF\";;\n", "#directory \"_build/Utils\";;\n", "\n", "\n", "#load \"Constants.cmo\";;\n", "#load_rec \"Util.cma\";;\n", "#load_rec \"Matrix.cmo\";;\n", "#load_rec \"Simulation.cmo\";;\n", "#load_rec \"Spindeterminant.cmo\";;\n", "#load_rec \"Determinant.cmo\";;\n", "#load_rec \"HartreeFock.cmo\";;\n", "#load_rec \"MOBasis.cmo\";;\n", "#load_rec \"F12CI.cmo\";;\n", "\n", "#install_printer AngularMomentum.pp_string ;;\n", "#install_printer Basis.pp ;;\n", "#install_printer Charge.pp ;;\n", "#install_printer Coordinate.pp ;;\n", "#install_printer Vector.pp;;\n", "#install_printer Matrix.pp;;\n", "#install_printer Util.pp_float_2darray;;\n", "#install_printer Util.pp_float_array;;\n", "#install_printer Util.pp_matrix;;\n", "#install_printer HartreeFock.pp ;;\n", "#install_printer Fock.pp ;;\n", "#install_printer MOClass.pp ;;\n", "#install_printer DeterminantSpace.pp;;\n", "#install_printer SpindeterminantSpace.pp;;\n", "#install_printer Bitstring.pp;;\n", "let pp_mo ppf t = MOBasis.pp ~start:1 ~finish:0 ppf t ;;\n", "#install_printer pp_mo;;\n", "\n", "\n", "(* --------- *)\n", "\n", "open Lacaml.D\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Calculs" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## H_{n}" ] }, { "cell_type": "markdown", "metadata": { "heading_collapsed": true }, "source": [ "### Generation du fichier xyz" ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "Pour faire plusieurs chaines d'hydrogene, il faut d'abord\n", "construire une fonction qui genere un fichier xyz pour\n", "une chaine de `n` hydrogenes avec une distance H-H de `d` bohr.\n", "Le fichier xyz est en Angstrom, donc il faut utiliser\n", "`Constants.a0` pour convertir les bohr en Angstroms.\n", "\n", "Voila un exemple de ce qu'on doit obtenir pour 20 hydrogenes:\n", "\n", "```\n", " 20\n", "Hydrogen chain, d=1.8 Bohr\n", "H -4.286335 0.000000 0.000000\n", "H -3.333816 0.000000 0.000000\n", "H -2.381297 0.000000 0.000000\n", "H -1.428778 0.000000 0.000000\n", "H -0.476259 0.000000 0.000000\n", "H 0.476259 0.000000 0.000000\n", "H 1.428778 0.000000 0.000000\n", "H 2.381297 0.000000 0.000000\n", "H 3.333816 0.000000 0.000000\n", "H 4.286335 0.000000 0.000000\n", "```" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "let string_of_xyz d n =\n", "\" 10\n", "Hydrogen chain, d=1.8 Bohr\n", "H -4.286335 0.000000 0.000000\n", "H -3.333816 0.000000 0.000000\n", "H -2.381297 0.000000 0.000000\n", "H -1.428778 0.000000 0.000000\n", "H -0.476259 0.000000 0.000000\n", "H 0.476259 0.000000 0.000000\n", "H 1.428778 0.000000 0.000000\n", "H 2.381297 0.000000 0.000000\n", "H 3.333816 0.000000 0.000000\n", "H 4.286335 0.000000 0.000000\n", "\"\n", "\n", "let xyz_string =\n", " string_of_xyz 1.8 10;;" ] }, { "cell_type": "markdown", "metadata": { "heading_collapsed": true }, "source": [ "### Base atomique" ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "Les bases atomiques sont telechargeables ici: https://www.basissetexchange.org/\n", "\n", "Voila la base STO-6G pour l'hydrogene:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "let basis_string = \n", "\"\n", "HYDROGEN\n", "S 6\n", "1 0.3552322122E+02 0.9163596281E-02\n", "2 0.6513143725E+01 0.4936149294E-01\n", "3 0.1822142904E+01 0.1685383049E+00\n", "4 0.6259552659E+00 0.3705627997E+00\n", "5 0.2430767471E+00 0.4164915298E+00\n", "6 0.1001124280E+00 0.1303340841E+00\n", "\n", "\"" ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "Une orbitale atomique STO-6G centree sur l'atome A est composee d'une contraction de 6 Gaussiennes:\n", "$$\n", "\\chi(r) = \\sum_{i=1}^6 a_i \\exp \\left( -\\alpha_i |r-r_A|^2 \\right)\n", "$$\n", "Dans le fichier de base, la 2ieme colonne represente l'exposant $\\alpha_i$ et la 3ieme colonne le coefficient de contraction $a_i$." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "let nuclei =\n", " Nuclei.of_xyz_string xyz_string\n", " \n", "let basis = \n", " Basis.of_nuclei_and_basis_string nuclei basis_string\n", " \n", "let simulation = \n", " Simulation.make ~charge:0 ~multiplicity:1 ~nuclei basis\n", " \n", "let ao_basis = \n", " Simulation.ao_basis simulation" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Plot des orbitales atomiques" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "let plot data filename = \n", " let output = Gnuplot.Output.create (`Png filename) in\n", " let gp = Gnuplot.create () in\n", " Gnuplot.set gp ~use_grid:true;\n", " List.map Gnuplot.Series.lines_xy data\n", " |> Gnuplot.plot_many gp ~output;\n", " Gnuplot.close gp ;\n", " Jupyter_notebook.display_file ~base64:true \"image/png\" filename\n", ";;\n", "\n", "let x_values = \n", " let n = 1000 in\n", " \n", " let xmin, xmax =\n", " let coord =\n", " Array.map snd nuclei\n", " |> Array.map (fun a -> Coordinate.(get X) a)\n", " in\n", " Array.sort compare coord;\n", " coord.(0) -. 4. ,\n", " coord.(Array.length coord -1) +. 4.\n", " in\n", "\n", " let dx =\n", " (xmax -. xmin) /. (float_of_int n -. 1.)\n", " in\n", " Array.init n (fun i -> xmin +. (float_of_int i)*.dx)\n", "in\n", "\n", "let data = \n", " Array.map (fun x -> \n", " let point = Coordinate.make_angstrom\n", " { Coordinate.\n", " x ; y = 0. ; z = 0.\n", " } in\n", " AOBasis.values ao_basis point\n", " ) x_values\n", " |> Mat.of_col_vecs\n", " |> Mat.transpose_copy\n", " |> Mat.to_col_vecs\n", " |> Array.map Vec.to_list\n", " |> Array.map (fun l -> List.mapi (fun i y -> (x_values.(i),y)) l)\n", " |> Array.to_list\n", "in\n", "plot data \"test_data.png\"" ] }, { "cell_type": "markdown", "metadata": { "heading_collapsed": true }, "source": [ "### Calcul Hartree-Fock pour generer des orbitales moleculaires" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "let hf = HartreeFock.make simulation" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "let mo_basis = MOBasis.of_hartree_fock hf" ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "Orbitales moleculaires :\n", "$$\n", "\\phi_j(r) = \\sum_{i=1}^{N_b} C_{ij} \\chi_i(r)\n", "$$\n", "\n", "* $i$: lignes\n", "* $j$: colonnes" ] }, { "cell_type": "markdown", "metadata": { "hidden": true }, "source": [ "Extraction des OM de la structure de donnees `mo_basis` comme une matrice $C$ utilisable avec Lacaml:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hidden": true }, "outputs": [], "source": [ "let mo_coef = MOBasis.mo_coef mo_basis" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "let plot data filename = \n", " let output = Gnuplot.Output.create (`Png filename) in\n", " let gp = Gnuplot.create () in\n", " Gnuplot.set gp ~use_grid:true;\n", " List.map Gnuplot.Series.lines_xy data\n", " |> Gnuplot.plot_many gp ~output;\n", " Gnuplot.close gp ;\n", " Jupyter_notebook.display_file ~base64:true \"image/png\" filename\n", ";;\n", "\n", "let x_values = \n", " let n = 1000 in\n", " \n", " let xmin, xmax =\n", " let coord =\n", " Array.map snd nuclei\n", " |> Array.map (fun a -> Coordinate.(get X) a)\n", " in\n", " Array.sort compare coord;\n", " coord.(0) -. 4. ,\n", " coord.(Array.length coord -1) +. 4.\n", " in\n", "\n", " let dx =\n", " (xmax -. xmin) /. (float_of_int n -. 1.)\n", " in\n", " Array.init n (fun i -> xmin +. (float_of_int i)*.dx)\n", "in\n", "\n", "let data = \n", " let result = \n", " Array.map (fun x -> \n", " let point = Coordinate.make_angstrom\n", " { Coordinate.\n", " x ; y = 0. ; z = 0.\n", " } in\n", " MOBasis.values mo_basis point\n", " ) x_values\n", " |> Mat.of_col_vecs\n", " |> Mat.transpose_copy\n", " |> Mat.to_col_vecs\n", " |> Array.map Vec.to_list\n", " |> Array.map (fun l -> List.mapi (fun i y -> (x_values.(i),y)) l)\n", " in\n", " [ result.(0) ; result.(1) ]\n", "in\n", "\n", "plot data \"test_data.png\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Calcul des integrales necessaires" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "let dx, x_values = \n", " let n = 101 in\n", " \n", " let xmin, xmax =\n", " let coord =\n", " Array.map snd nuclei\n", " |> Array.map (fun a -> Coordinate.(get X) a)\n", " in\n", " Array.sort compare coord;\n", " coord.(0) -. 10. ,\n", " coord.(Array.length coord -1) +. 10.\n", " in\n", "\n", " let dx =\n", " (xmax -. xmin) /. (float_of_int n -. 1.)\n", " in\n", " dx, Array.init n (fun i -> xmin +. (float_of_int i)*.dx)\n", "in\n", "\n", "let dy, y_values = \n", " let n = 51 in\n", " \n", " let ymin, ymax =\n", " let coord =\n", " Array.map snd nuclei\n", " |> Array.map (fun a -> Coordinate.(get Y) a)\n", " in\n", " Array.sort compare coord;\n", " coord.(0) -. 10. ,\n", " coord.(Array.length coord -1) +. 10.\n", " in\n", "\n", " let dy =\n", " (ymax -. ymin) /. (float_of_int n -. 1.)\n", " in\n", " dy, Array.init n (fun i -> ymin +. (float_of_int i)*.dy)\n", "in\n", "\n", "\n", "let dz, z_values = \n", " let n = 51 in\n", " \n", " let zmin, zmax =\n", " let coord =\n", " Array.map snd nuclei\n", " |> Array.map (fun a -> Coordinate.(get Z) a)\n", " in\n", " Array.sort compare coord;\n", " coord.(0) -. 10. ,\n", " coord.(Array.length coord -1) +. 10.\n", " in\n", "\n", " let dz =\n", " (zmax -. zmin) /. (float_of_int n -. 1.)\n", " in\n", " dz, Array.init n (fun i -> zmin +. (float_of_int i)*.dz)\n", "in\n", "\n", "\n", "let points = \n", " Array.map (fun x -> \n", " Array.map (fun y -> \n", " Array.map (fun z -> \n", " Coordinate.make_angstrom\n", " { Coordinate.\n", " x ; y ; z \n", " } \n", " ) x_values\n", " ) y_values\n", " ) z_values\n", " |> Array.map Array.to_list\n", " |> Array.to_list\n", " |> List.concat\n", " |> Array.concat\n", "in\n", "\n", "let dv = dx *. dy *. dz in\n", "Printf.printf \"%f %f %f %f\\n%!\" dx dy dz dv;\n", "\n", "let ao_val = \n", " Array.map (fun point -> \n", " AOBasis.values ao_basis point\n", " ) points\n", " |> Mat.of_col_vecs\n", "in\n", "\n", "(*\n", "let r = \n", " gemm ~transb:`T ao_val ao_val \n", "in\n", "Mat.scal dv r;\n", "r;;\n", "AOBasis.overlap ao_basis |> Overlap.matrix ;;\n", "*)\n", "\n", "let ao_x_val = \n", " Array.map (fun point -> \n", " let r = AOBasis.values ao_basis point in\n", " scal (Coordinate.(get X) point) r;\n", " r\n", " ) points\n", " |> Mat.of_col_vecs\n", "in\n", "\n", "let r = \n", " gemm ~transb:`T ao_val ao_x_val \n", "in\n", "Mat.scal dv r;\n", "r;;\n", "AOBasis.multipole ao_basis |> Multipole.matrix_x ;;" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Localisation des orbitales" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "let local;;\n" ] } ], "metadata": { "kernelspec": { "display_name": "OCaml 4.10.0", "language": "OCaml", "name": "ocaml-jupyter" }, "language_info": { "codemirror_mode": "text/x-ocaml", "file_extension": ".ml", "mimetype": "text/x-ocaml", "name": "OCaml", "nbconverter_exporter": null, "pygments_lexer": "OCaml", "version": "4.10.0" } }, "nbformat": 4, "nbformat_minor": 4 }